
计算机视觉
文章平均质量分 58
以案例讲解为主,由浅入深,带入图像视觉算法开发过程中。
G_redsky
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
计算机视觉入门书籍推荐
虽然这本书的重点是深度学习,但它也包含了关于如何使用Keras框架进行计算机视觉任务的章节,适合希望通过深度学习方法进行计算机视觉开发的读者。这本书是计算机视觉领域的经典教材,虽然不完全是编程开发指南,但它提供了深入的算法描述和理论基础,有助于开发者理解计算机视觉背后的原理。这本书提供了计算机视觉的全面概述,包括视觉感知的生物学基础、计算机视觉的基本概念和技术,以及当前的研究热点。本书是计算机视觉领域的经典教材,全面介绍了计算机视觉的基本原理和算法,适合有一定数学和编程基础的读者。原创 2024-04-26 07:16:12 · 1961 阅读 · 5 评论 -
计算机视觉顶会有哪些
ICML(国际机器学习大会):同样,ICML也不是专门针对计算机视觉的会议,但计算机视觉领域的许多研究工作涉及到机器学习技术,因此ICML也是计算机视觉研究者关注的重要会议之一。NeurIPS(神经信息处理系统大会):虽然不是专门针对计算机视觉的会议,但由于计算机视觉与机器学习的紧密联系,NeurIPS也吸引了大量计算机视觉领域的研究者参与。:Applied Sciences是一个跨学科的开放获取期刊,覆盖应用科学的各个领域,包括计算机视觉。该期刊的审稿周期相对较短,且对于新手作者比较友好。原创 2024-04-23 09:21:59 · 2032 阅读 · 3 评论 -
【图像校正】Matlab实现文本校正
在上述代码中,首先读取图像并转换为灰度。接着,应用高斯模糊和Canny边缘检测来提取图像中的线条。通过霍夫变换找到图像中的垂直和水平线条,并计算这些线条的交点,以确定文本的四个角点。然后,创建一个新的图像用于存放校正后的文本,并计算透视变换矩阵。最后,应用透视变换,并显示校正后的文本。在MATLAB中,文本校正通常指的是对图像中的文本进行透视变换,以纠正由于拍摄角度或透视效果导致的文本扭曲。这可以通过使用MATLAB的计算机视觉工具箱中的。原创 2024-04-11 20:29:43 · 496 阅读 · 0 评论 -
【目标检测】根据目标边缘检测结果,生成完整轮廓-轮廓生长算法
结构体则用于存储每个对象的生长信息。在循环结束后,所有对象的生长信息被存储在。函数来获取目标的轮廓信息。函数进行腐蚀操作,以去除小的噪点。函数进行膨胀操作,以实现目标轮廓的生长。函数将生长后的目标轮廓和中心点显示出来。函数将彩色图像转换为灰度图,然后使用。变量用于记录每次迭代后的生长区域,而。在MATLAB中,可以使用。需要注意的是,上述代码中的。函数来标记连通域,并使用。在上述代码中,首先使用。原创 2024-04-11 20:17:11 · 530 阅读 · 0 评论 -
【计算机视觉】点云图像处理技术的应用及图像配准
变换模型估计:根据匹配的特征点,估计雷达点云与图像之间的变换模型。预处理:对雷达点云数据进行预处理,包括去噪、滤波、下采样等,以减少数据量并提高后续处理的效率。特征匹配:使用特征匹配算法,如SIFT、SURF或ORB,将雷达点云的特征点与图像的特征点进行匹配。数据采集:首先,需要同时获取雷达点云数据和相应的图像数据。配准:将雷达点云数据根据估计的变换模型进行配准,使其与图像对齐。自动驾驶汽车:自动驾驶汽车通过激光雷达(LiDAR)传感器获取周围环境的三维点云数据,进行障碍物检测、道路边界识别、车辆跟踪等。原创 2024-03-30 11:59:37 · 2133 阅读 · 0 评论 -
【C#】用C#创建人脸识别系统
至少需要一个PictureBox控件来显示图像,以及按钮来触发加载图像和执行面部识别。使用所选的库中的面部识别的API。以Emgu CV为例,您可以使用CascadeClassifier类来检测图像中的面部。Emgu CV是一个流行的选择,因为它是OpenCV的.NET封装。可能需要调整识别参数或尝试不同的面部识别算法。这些数据集通常包含不同人脸的图像,用于训练和测试面部识别模型。运行应用程序,加载面部图像,并测试面部识别功能。安装.NET Framework或.NET Core,这取决于您选择的库。原创 2024-03-28 22:23:41 · 1101 阅读 · 0 评论 -
【C#】用C#编写简单的计算机视觉软件
OpenTK:这是Open Toolkit的.NET封装,提供了对OpenGL和OpenAL的访问,可以用于图像渲染和音频处理。Sfml.Net:这是Simple and Fast Multimedia Library(SFML)的.NET版本,主要用于游戏开发,但也可以用于图像处理和计算机视觉项目。Emgu CV:这是OpenCV的.NET封装,提供了许多计算机视觉功能,如图像处理、特征提取、目标识别等。Accord.NET:这是一个机器学习框架,也包括了一些计算机视觉的功能,如图像处理和模式识别。原创 2024-03-28 22:21:41 · 817 阅读 · 0 评论 -
【图像配准】红外图像和可见光图像配准中可能会遇到的问题
红外图像和可见光图像配准过程中可能会遇到多种问题,这些问题可能会影响图像的质量和配准的准确性。解决方法:应用直方图均衡化或自适应直方图均衡化技术,改善图像的亮度和对比度,减少光照条件对图像配准的影响。解决方法:根据图像的特点和配准需求,选择合适的配准算法,如基于特征的方法、基于区域的方法或基于模板的方法。在进行红外图像和可见光图像配准时,应根据具体情况选择合适的预处理和配准方法,以提高配准的准确性和效率。解决方法:使用图像预处理技术,如特征提取和尺度变换,来调整图像的尺度,使其匹配。原创 2024-03-23 23:30:51 · 1447 阅读 · 0 评论 -
【图像配准】图像配准中会用到的数学模型有哪些?
其中,a11、a12、a13、a21、a22 和 a23 是透视变换矩阵的元素,而 a31、a32 和 a33 则是归一化因子,用于将源图像的坐标系转换为目标图像的坐标系。在图像配准中,同台态变换模型可以用来将一幅图像(源图像)变换到另一幅图像(目标图像)的坐标系中,以模拟相机的透视效果和光照变化。在图像配准中,仿射变换模型可以用来将一幅图像(源图像)变换到另一幅图像(目标图像)的坐标系中。在图像配准中,透视变换模型可以用来将一幅图像(源图像)变换到另一幅图像(目标图像)的坐标系中,以模拟相机的透视效果。原创 2024-03-23 23:28:46 · 1348 阅读 · 0 评论 -
【算法应用案例】图像处理工程化应用的案例及关键代码实现
OpenCV提供了一个名为dnn(深度神经网络)的模块,它可以用来加载和运行预训练的深度学习模型,如YOLO(You Only Look Once)。请注意,这个伪代码是一个非常简化的版本,实际应用中需要考虑更多的细节,如车辆类型识别、多车道检测、实时性优化等。由于上述案例涉及到多个复杂的子系统,包括图像采集、图像处理、数据处理、控制系统和用户界面等,这里提供一个简化版的车辆检测算法的伪代码,这是整个系统中非常关键的一部分。设计一个中央控制单元,接收各路口的实时数据,并发送控制指令至相应的信号灯。原创 2024-03-22 10:19:20 · 1495 阅读 · 0 评论 -
【多线程优化】cuda加速图像处理算法示例
在主函数中,我们首先将图像数据从CPU内存传输到GPU内存。然后,我们调用CUDA内核来处理图像,并将处理结果从GPU内存传输回CPU内存。编写CUDA内核:接着,你需要编写一个CUDA内核,它将在GPU上执行图像处理算法。最后,我们在CPU上调用CUDA内核,并将处理结果从GPU内存传输回CPU内存。调用CUDA内核:最后,你需要在CPU上调用CUDA内核,并将处理结果从GPU内存传输回CPU内存。在这个示例中,我们首先将图像数据从CPU内存传输到GPU内存。在这个示例中,我们使用了一个CUDA内核。原创 2024-03-22 10:18:55 · 1188 阅读 · 0 评论 -
【多线程优化】c++在图像处理过程中如何调用多线程
通过使用异步I/O操作,可以在等待I/O操作完成时进行其他计算任务,提高程序的执行效率。通过使用缓存技术,可以将频繁访问的数据存储在内存中,减少磁盘I/O操作和数据传输时间。在图像处理中,可以使用缓存来存储处理过的图像数据和中间结果,避免重复计算。来存储线程对象,并根据图像的宽度和系统支持的最大线程数来分配每个线程处理的区域。来存储线程对象,并根据图像的宽度和系统支持的最大线程数来分配每个线程处理的区域。来存储线程对象,并根据图像的宽度和系统支持的最大线程数来分配每个线程处理的区域。函数来检测图像的边缘。原创 2024-03-22 07:56:56 · 1869 阅读 · 0 评论