
AIGC
文章平均质量分 81
骚火棍
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AE、VAE与GAN简明指南:三大生成模型对比
AE、VAE与GAN简明对比指南 本文对比了三种主流生成模型的核心特点: AE(自编码器):通过编码-解码结构压缩还原数据,结构简单但生成能力有限,适合压缩和去噪任务。 VAE(变分自编码器):在AE基础上加入概率分布,使隐空间连续可插值,能生成新样本,适用于数据增强和可控生成。 GAN(生成对抗网络):采用生成器与判别器对抗训练,生成质量最佳但训练难度大,适合高质量图像生成任务。 三种模型各具优势:AE简单易用,VAE平衡质量与稳定性,GAN生成效果最优但需精细调参。选择时需权衡复杂度、训练稳定性和生成质原创 2025-07-29 16:44:11 · 882 阅读 · 0 评论 -
Stable Diffusion推导与理解:从文本到图像的生成革命
Stable Diffusion是一种突破性的文本到图像生成模型,通过将扩散过程迁移到潜空间并引入文本条件机制,实现了高效可控的图像生成。其核心架构包含VAE(负责图像压缩)、CLIP文本编码器和条件U-Net三个组件。模型通过交叉注意力机制将文本条件融入扩散过程,并使用Classifier-Free Guidance技术精确控制文本引导强度。相比传统扩散模型,Stable Diffusion通过在潜空间(64×64×4)而非像素空间(512×512×3)操作,将计算量降低约48倍,同时保持生成质量。这种创原创 2025-07-29 16:00:51 · 748 阅读 · 0 评论 -
DDIM解析:从DDPM到高效采样的进化
摘要: DDIM(去噪扩散隐式模型)是针对DDPM采样速度慢问题的改进方案。通过引入非马尔可夫过程,DDIM实现了20-50倍的采样加速,而保持生成质量。其核心创新在于:1)将前向过程推广为隐式概率模型;2)允许确定性采样(σ_t=0);3)支持任意子序列跳步采样。实际应用中,DDIM在需要快速响应(50步)、原型验证(20步)或可控生成时优势明显,而DDPM仍适用于理论研究或最高质量要求场景。该技术为扩散模型的工业部署提供了关键解决方案。原创 2025-07-29 15:20:53 · 832 阅读 · 0 评论 -
DDPM推导与理解:从数学建模到实际应用
本文系统介绍了去噪扩散概率模型(DDPM)的数学原理与应用。首先阐述DDPM所需的三个核心数学概念:马尔科夫链的无记忆性、贝叶斯公式的概率更新机制,以及正态分布的关键性质。随后详细解析DDPM的两阶段过程:前向扩散通过逐步加噪将数据转为高斯分布,反向去噪则学习逆转该过程。训练目标为变分下界(ELBO),简化为预测噪声的均方误差。噪声预测网络ε_θ(x_t,t)是模型核心,学习从带噪图像中估计真实噪声。最后描述了采样过程,从纯噪声出发,通过迭代去噪生成高质量图像。全文展示了DDPM如何从严谨数学理论出发,构建原创 2025-07-29 12:32:39 · 1019 阅读 · 0 评论 -
LangGraph底层API入门总结
LangGraph图结构基础摘要 LangGraph的核心是基于图结构的工作流系统,通过节点(Nodes)和边(Edges)构建执行流程。关键概念包括: 图结构组成: 节点代表可执行功能单元(如LLM接口、检索工具等) 边定义节点间的执行顺序 状态(State)在节点间传递和更新数据 构建流程: 使用StateGraph类创建图构建器 通过add_node添加功能节点 通过add_edge定义执行路径 使用compile方法生成可执行图 状态管理: 节点只需返回要更新的状态部分 系统自动维护完整状态上下文原创 2025-07-27 17:26:15 · 1174 阅读 · 0 评论 -
Browser-use部署与使用及技术分析
Browser-use部署与使用及技术分析原创 2025-04-09 15:36:18 · 454 阅读 · 0 评论 -
Agent——客服机器人(大模型+本地数据/话术+在线数据库)
只能客服机器人的特点,根据本地资料,回答用户问题,告别传统机器人的答非所问,同时根据用户回答,判断用户意向度,并询问感兴趣用户的个人信息,获得后,保存在数据库中,以便人工客服,进行后续跟进!原创 2024-04-09 18:06:47 · 1439 阅读 · 0 评论 -
Agent——GPTs构建广告文案(只需一个网址链接即可模仿生成你想要的文案及配图)
功能介绍:假如我看到一篇文案写的非常好,想要学习模仿,写一篇既要相似又要不同的文案,该如果做?传统做法我们至少需要两个相关工作人员,一个文案,一个插画。但是现在,只需一个链接,你没听错!原创 2024-04-03 18:28:04 · 969 阅读 · 0 评论 -
LoRA原理解析
LoRA 的全称是 “Low-Rank Adaption”, 看到 “low-rank”,线性代数玩家们应该会神经反射性地联系到低秩矩阵。你问我 LoRA 的中文名?就叫它“低秩(自)适应”吧,虽然英文里没有 “self”, 但根据 LoRA 的思想和做法及其带来的效果,它就是自适应的意思。作者在 paper 中提到:以往的一些工作表明,模型通常是“**过参数化”(over-parametrized)**的,它们在优化过程中参数更新的部分通常“驻扎”(reside)在低维子空间中。原创 2023-06-09 17:25:07 · 904 阅读 · 0 评论