卷积神经网络如何工作

本文详细介绍了卷积神经网络的工作原理,以LeNet-5为例,涵盖了输入层、卷积层、池化层、多核滤波器以及全连接层等关键组件。讲解了不同层的计算过程、参数数量和连接关系,揭示了CNN在特征提取和图像识别中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积网络输出尺寸

  • 输入图像大小 W ∗ W W*W WW
  • 滤波器Filter大小 F ∗ F F*F FF
  • 步长 S S S
  • padding的像素 p p p

于是我们可以得出:
N = ( W − F + 2 P ) / S + 1 N = (W − F + 2P )/S+1 N=(WF+2P)/S+1

卷积神经网络如何工作

卷积网络不是一次只关注一个像素,而是接收方形的像素块并将它们传递给滤波器。该滤波器也是比图像本身小的方阵,滤波器的工作就是在像素中找到模式(特征提取)。
CV.gif-413.7kB

Multi-Kernels

b a t c h batch batch张图片,每张图片是RGB三通道的彩色图,图像大小是5×5。

x : [ b a t c h , 3 , 5 , 5 ] x:[batch,3,5,5] x:[batch,3,5,5]

如果是一个滤波器,滤波器大小为 3 × 3 3×3 3×3,卷积核的厚度对应Feature Maps的通道数,即3。

o n e k e r n e l : [ 3 , 3 , 3 ] one kernel:[3,3,3] onekernel:[3,3,3]

如果是一组滤波器(即多个滤波器),滤波器大小为 3 × 3 3×3 3×3,卷积核的厚度对应Feature Maps的通道数,即3,共2组滤波器。

m u l t i k e r n e l s : [ 2 , 3 , 3 , 3 ] multi kernels:[2,3,3,3] multikernels:[2,3,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值