一、RAG技术概述
1. RAG技术发展背景
随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了重大突破。特别是OpenAI推出的ChatGPT,凭借其卓越的语言识别、理解以及推理能力,让大语言模型(LLM)走进了人们的视野。这些模型展现出的智能和灵活性,使得越来越多的行业开始探索其应用潜力。从政务领域的智能办公与决策支持,到医疗行业的辅助诊断与患者咨询;从交通领域的智能调度与路径规划,到商业导购中的个性化推荐与客户服务,LLM的应用场景不断拓展,为各行业带来了前所未有的机遇。
然而,在LLM展现出巨大潜力的同时,其存在的诸多不足也逐渐暴露出来。
- 知识的滞后性:LLM的知识更新存在滞后性,模型知识的获取是通过使用训练数据集训练获取的,模型训练后产生的一些新知识,模型是无法学习的,而大模型训练成本极高,不可能经常为了弥补知识而进行模型训练。因此,它们的知识通常截止于某个特定时间点,无法实时获取最新的信息,这在需要及时准确信息的场景中是一个明显缺陷。
- 知识的局限性:大语言模型知识的广度获取严重依赖于训练数据集的广度,目前市面上大多数的大模型的训练集来源于网络公开数据集,对于一些内部数据、特定领域或高度专业化的知识,无从学习。
- 幻觉问题:LLM在生成回答时可能会出现幻觉问题,即生成与事实不符的内容,这严重影响了其输出的可信度。所有的AI模型的底层原理都是基于数学概率,其模型输出实质上是一系列数值运算,大模型也不例外,所以它有时候会一本正经地胡说八道,尤其是在大模型自身不具备某一方面的知识或不擅长的场景。
- 数据安全性:对于客户来说,数据安全至关重要,没有企业客户(政府客户)愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。这也导致完全依赖通用大模型自身能力的应用方案不得不在数据安全和效果方面进行取舍。
- 缺乏上下文相关性:大语言模型(LLM)在生成内容时基于其训练的数据集内容,导致其有些时候缺乏足够的上下文相关性,无法充分理解用户的意图和背景信息,导致回答不够精准。
而这些问题限制了LLM在一些对准确性和可靠性要求较高的领域的广泛应用。
在这样的背景下,RAG(Retrieval-Augmented Generation,检索增强生成)技术应运而生。RAG的出现旨在弥补LLM的不足,通过结合信息检索和文本生成,为模型提供更广泛的知识来源和更丰富的上下文信息。在RAG的框架下,当用户提出问题时,系统先从外部知识库中检索与问题最相关的文档或信息片段,然后将这些信息作为上下文注入到LLM中,辅助其生成更准确、更相关、更可信的回答。这种技术融合不仅有效解决了LLM的知识局限性和幻觉问题,还提升了其在复杂任务中的表现能力,使其能够更好地满足各行业对高质量语言处理的需求。
RAG技术的出现和发展,是自然语言处理领域技术演进的必然结果,也是对大语言模型(LLM)应用需求的积极回应。它为大语言模型(LLM)的进一步优化和拓展提供了新的思路和方法,推动了人工智能技术在更多领域的深入应用和创新发展。
2. RAG技术介绍
RAG(Retrieval-Augmented Generation,检索增强生成)是指对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大语言模型(LLM)用海量数据进行训练,使用数十亿个参数为回答问题、翻译语言和完成句子等任务生成原始输出。在大语言模型(LLM)本就强大的功能基础上,RAG 将其扩展为能访问特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进 大语言模型(LLM)输出的方法,让它在各种情境下都能保持相关性、准确性和实用性。实际上,RAG的本质是In Context Learning(语言上下文学习),即 RAG(检索增强生成) = 检索技术 + LLM 提示
。
RAG通过集成外部知识源增强大型语言模型(LLM)的能力,突破静态训练数据的知识局限。典型场景为用户向LLM(如ChatGPT)询问近期热点新闻,RAG通过检索外部数据库的动态知识,生成准确且内容丰富的响应。
RAG应用遵循三阶段流程:检索(Retrieval)、融合增强(Augmentation)、生成(Generation),其基础工作流程包括:
- 索引(Indexing):将外部知识源的文档分割为小块(chunks),编码为向量表示(embedding),存储于向量数据库,便于高效搜索。
- 检索(Retrieval):根据用户查询,计算其与索引文档的语义相似度,提取Top-k相关文档块,作为生成上下文。
- 生成(Generation):将查询与检索块输入LLM,生成基于外部知识的响应,确保事实准确性。
1.3 RAG技术的重要性
RAG的重要性在于它能够有效解决LLM在知识更新、幻觉问题、上下文相关性等方面的不足,同时提高系统的效率、透明度和可追溯性。它不仅推动了人工智能技术的发展,还为各行业提供了更强大、更可靠的工具来应对复杂的需求和挑战。
-
RAG用于解决LLM的知识局限性,RAG通过检索外部知识源,能够为模型提供最新的数据和信息,从而解决知识更新的滞后性问题。同时,RAG通过检索相关文档作为上下文,帮助模型生成更准确、更可信的回答,减少幻觉现象。
-
RAG技术能够提高效率和成本效益,RAG通过检索外部知识源,无需频繁重新训练模型,大大降低了成本。RAG通过融合大语言模型(LLM)的参数化知识与外部非参数化数据,显著提升性能,为知识密集型任务提供高效解决方案。其通过检索可验证信息,优化响应质量,支持持续知识更新与领域特定信息集成。
-
RAG能够有效缓解生成错误问题,通过引用外部知识源降低事实性错误概率,特别适用于高准确性场景。其输出可追踪且透明,解决传统大语言模型(LLM)推理不透明的局限性。RAG支持生成可验证的文本响应,通过集成特定领域知识库,将LLM转变为专业领域专家,适用于法律、医疗等应用。
-
RAG能够增强上下文相关性,RAG能够根据具体问题检索到最相关的知识片段,并将其作为上下文注入到LLM中。这样生成的回答更具针对性和相关性,能够更好地满足用户的需求。RAG可以根据不同领域(金融、医疗等)的需求,从专门的知识库中检索信息,生成符合行业标准的回答。
二、RAG的发展历程与技术范式
RAG的概念最早由Patrick Lewis及其团队在2020年的论文《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》中提出。当时,研究团队正在寻找一种方法,将更多知识融入到大型语言模型(LLM)中,以解决LLM在知识密集型任务中的局限性。这项技术最初是为了应对知识密集型自然语言处理任务而设计的,此后迅速发展,在其研究历程中形成了不同的阶段。
最初,研究旨在通过在预训练阶段向语言模型注入更多知识来增强其能力。ChatGPT的推出引发了对利用大型模型进行深度上下文理解的极大兴趣,这也加速了RAG在推理阶段的发展。随着研究人员深入探索大型语言模型(LLMs)的能力,关注点逐渐转向提升其可控性和推理技能,以跟上不断增长的技术与应用需求。GPT-4的出现标志着一个重要的里程碑,它以一种新的方式将RAG与微调技术相结合,同时继续优化预训练策略。
在RAG的技术发展历程中,我们从技术范式的角度将其演变过程总结为以下阶段。
2.1 Naive RAG(基础RAG)
经典的RAG流程,也称为Naive RAG(基础RAG),它主要包括以下三个基本步骤:
- 索引(Indexing):将文档语料库拆分成较短的片段,并通过编码器构建向量索引。
- 检索(Retrieval):根据问题与片段之间的相似性检索相关的文档片段。
- 生成(Generation):基于检索到的上下文生成问题的答案。
2.2 Advanced RAG(高级RAG)
Naive RAG在检索、生成和增强方面面临诸多挑战。随后提出了Advanced RAG(高级RAG)范式,它在检索之前和检索之后增加了额外的处理步骤。在检索之前,可以采用查询重写、路由和扩展等方法来弥合问题与文档片段之间的语义差异。在检索之后,可以对检索到的文档语料库进行重排,以避免“迷失在中间”的现象,或者对上下文进行过滤和压缩,以缩短上下文窗口长度。
2.3 Modular RAG(模块化RAG)
随着RAG技术的进一步发展和演变,新的突破超越了传统的Naive RAG检索-生成框架,从而产生了Modular RAG(模块化RAG)的概念。在结构上,它更加自由灵活,引入了更具体的模块,例如查询搜索引擎和多答案融合。在技术上,它将检索与微调、强化学习等技术相结合。在流程上,RAG模块被设计和编排,从而形成了各种RAG模式。
然而,模块化RAG并非凭空出现;这三种范式之间存在着继承与发展关系。高级RAG是模块化RAG的一个特例,而基础RAG是高级RAG的一个特例。
以下是RAG三种技术范式的对比说明:
- Naive RAG(基础RAG) 主要由三部分组成:索引、检索和生成。
- Advanced RAG(高级RAG) 围绕检索前和检索后提出了多种优化策略,其过程与朴素RAG相似,仍然遵循链状结构。
- Modular RAG(模块化RAG) 继承和发展了以前的范式,整体上展示了更大的灵活性。这在引入多个特定功能模块和替换现有模块方面表现得很明显。整个过程并不局限于顺序检索和生成;它包括迭代和自适应检索等方法。
三、RAG工作原理
3.1 RAG技术工作原理
RAG(Retrieval-Augmented Generation,检索增强生成)的工作原理是通过结合**信息检索(Retrieval)和语言生成(Generation)**两个步骤,来提升语言模型生成回答的准确性和相关性。
以下是RAG工作流程原理的详细解释:
Step 1. 问题输入
用户向系统提出一个问题,例如:“2024年全球最畅销的电动汽车品牌是什么?”
Step 2. 信息检索(Retrieval)
- 检索模块的作用:检索模块是RAG的第一步,它的任务是从外部知识源(如文档、数据库或网络)中找到与用户问题最相关的文档或信息片段。
- 检索过程:
- 文本编码:将用户的问题转换为向量表示,便于与知识库中的内容进行比较。
- 相似性搜索:在知识库中搜索与问题向量最相似的文档或片段。这通常使用向量相似性搜索技术(如FAISS、Pinecone等)来实现。
- 选择相关文档:检索模块会返回与问题最相关的几个文档或片段,这些文档将作为后续生成的上下文。
Step 3. 上下文融合(Fusion)
- 融合模块的作用:检索到的相关文档需要与原始问题进行融合,形成增强后的上下文。
- 融合过程:
- 文档处理:对检索到的文档进行预处理,提取关键信息,确保其适合用于生成回答。
- 上下文构建:将处理后的文档与原始问题组合,形成一个完整的上下文。这个上下文包含了问题和相关的背景信息。
Step 4. 语言生成(Generation)
- 生成模块的作用:生成模块是RAG的第二步,它的任务是根据增强后的上下文生成回答。
- 生成过程:
- 上下文输入:将融合后的上下文输入到语言模型(如GPT、LLaMA等)中。
- 生成回答:语言模型根据上下文生成回答。由于上下文包含了与问题相关的最新信息,生成的回答通常更准确、更相关。
Step 5. 输出回答
生成的回答会返回给用户。例如,对于上述问题,系统可能会生成:“2024年全球最畅销的电动汽车品牌是特斯拉(Tesla),其市场份额显著领先于其他品牌。”
Step 6. 反馈与优化(可选)
- 用户反馈:用户可以对生成的回答进行评价,反馈是否满意。
- 系统优化:根据用户反馈,系统可以进一步优化检索策略和生成算法,提升性能。
3.2 RAG核心组件
RAG框架由检索(Retrieval)、生成(Generation)、融合增强(Augmentation)三大组件构成,协同增强LLM能力。
- 检索组件:负责从外部知识源中找到与问题最相关的文档或片段,涉及知识库、API或向量数据库。
- 融合增强组件:将检索到的文档与原始问题结合,形成增强后的上下文。
- 生成组件:根据增强后的上下文生成回答。
通过这种“检索 + 生成”的方式,RAG能够有效解决LLM的知识局限性和幻觉问题,同时提升生成回答的准确性和相关性。
四、RAG生态应用系统
RAG(检索增强生成)技术的应用范围已经突破了传统的问答系统领域,其影响力正在迅速扩展到更多行业和任务类型中。如今,从个性化推荐系统到复杂的信息抽取任务,再到自动化报告生成,RAG技术正以其独特的优势为这些领域带来变革,显著提升系统的性能和用户体验。
与此同时,RAG技术栈也迎来了快速发展的黄金时期。除了Langchain和LlamaIndex等广受欢迎的开源工具外,市场对RAG技术的需求不断增长,推动了一系列更具针对性的RAG工具的涌现。这些工具的出现,不仅丰富了RAG的应用场景,也标志着RAG生态系统正在逐步形成和完善。
RAG生态系统的形成和发展,不仅为技术开发者提供了丰富的工具选择,也为各行业的用户带来了更加灵活和高效的解决方案。通过整合不同类型的RAG工具,用户可以根据自身需求构建定制化的RAG系统,从而在保持技术先进性的同时,实现成本效益的最大化。此外,RAG生态系统的不断完善还将促进技术的创新和迭代,推动RAG技术在更多领域实现突破,为人工智能的发展注入新的动力。
五、RAG相关问题
5.1 为什么RAG系统中需要向量数据库?
向量数据库是 RAG 系统的核心,可以以数据块形式有效地存储特定于业务的信息,每个数据块由嵌入模型产生的相应多维向量表示。存储在向量数据库中的数据块可以是文本、图形、图表、表格、视频或其他数据模式。这些数据库可以处理向量空间操作的复杂性和特异性,如余弦相似性,因此具备几个关键优势:
- 高效相似性搜索:能够快速搜索最接近查询向量的 top-K 向量,对语义搜索和推荐系统而言至关重要。
- 处理高维数据:随着数据中相关特征数量的增加,使用传统 SQL 数据库难以提供最快的性能。
- 可扩展性:向量数据库可以在多个 GPU加速服务器上运行,以提供理想的数据摄取或相似性搜索性能。
- 实时处理:RAG 应用,如 AI聊天机器人,依靠向量数据库提供最新的业务信息发送给 LLM,因此 LLM 能够更好地满足用户的查询。
- 增强的搜索相关性:通过理解语义关系,改善内容发现和用户体验,提供更相关的结果。
这些功能令向量数据库成为 RAG 不可或缺的一部分,支持涉及复杂数据的高效运维。
5.2 RAG和传统语义搜索有什么区别?
语义搜索可以提高 RAG 结果,适用于想要在其大语言模型(LLM)应用程序中添加大量外部知识源的组织。现代企业在各种系统中存储大量信息,例如手册、常见问题、研究报告、客户服务指南和人力资源文档存储库等。上下文检索在规模上具有挑战性,因此会降低生成输出质量。
而语义搜索技术可以扫描包含不同信息的大型数据库,并更准确地检索数据。例如,他们可以回答诸如 “去年在机械维修上花了多少钱?”之类的问题,方法是将问题映射到相关文档并返回特定文本而不是搜索结果。然后,开发人员可以使用该答案为大语言模型(LLM)提供更多上下文。
RAG 中的传统或关键字搜索解决方案对知识密集型任务产生的结果有限。为此,开发人员在手动准备数据时还必须处理单词嵌入、文档分块和其他复杂问题。相比之下,语义搜索技术可以完成知识库准备的所有工作,可以减少开发人员处理知识密集型任务的工作量。它们还生成语义相关的段落和按相关性排序的标记词,以最大限度地提高 RAG 有效载荷的质量。