基础篇3:深入理解 Transformer

介绍

在自然语言处理(NLP)中,Transformer 是一种重要的深度学习模型结构,它在许多任务中都表现出了强大的性能,例如文本分类、情感分析和机器翻译。Transformer 的关键特性之一就是自注意力机制,它让模型能够关注到输入序列中的重要部分。本教程将详细解释 Transformer 和自注意力机制的工作原理,并通过具体的例子说明如何进行应用。

Transformer 模型

Transformer 是一种由神经网络层堆叠而成的模型,每一层都包含两个主要部分:自注意力机制(Self-Attention Mechanism)和前馈神经网络(Feed-forward Neural Network)。

在处理输入序列时,每一层 Transformer 都会进行以下两个步骤:

  1. 自注意力机制:在这个步骤中,每个词会“观察周围”以查找具有相关上下文并彼此共享信息的其他词。

  2. 前馈神经网络:在这个步骤中,每个词会“思考”之前注意力步骤中收集到的信息,并尝试预测下一个单词。

这两个步骤使得 Transformer 能够充分利用现代 GPU 的大规模并行处理能力,同时也帮助模型处理长序列,这是早期语言模型面临的挑战。

注意力机制

注意力机制是 Transformer 的一个关键组成部分,它让模型能够关注到输入序列中的重要部分。在每个注意力步骤中,每个词都会制作一个检查表(称为查询向量),描述它寻找的词的特性。同时,每个词还会制作一个检查表(称为关键向量),描述它自己的特征。

神经网络通过将每个关键向量与每个查询向量进行比较(通过计算点积)来找到最佳匹配的单词。一旦找到匹配项,它将从产生关键向量的单词传递相关信息到产生查询向量的单词。

注意力头和层

每个 Transformer 层都有多个注意力头,这意味着,信息交换过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

garyyu2200

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值