介绍
在自然语言处理(NLP)中,Transformer 是一种重要的深度学习模型结构,它在许多任务中都表现出了强大的性能,例如文本分类、情感分析和机器翻译。Transformer 的关键特性之一就是自注意力机制,它让模型能够关注到输入序列中的重要部分。本教程将详细解释 Transformer 和自注意力机制的工作原理,并通过具体的例子说明如何进行应用。
Transformer 模型
Transformer 是一种由神经网络层堆叠而成的模型,每一层都包含两个主要部分:自注意力机制(Self-Attention Mechanism)和前馈神经网络(Feed-forward Neural Network)。
在处理输入序列时,每一层 Transformer 都会进行以下两个步骤:
-
自注意力机制:在这个步骤中,每个词会“观察周围”以查找具有相关上下文并彼此共享信息的其他词。
-
前馈神经网络:在这个步骤中,每个词会“思考”之前注意力步骤中收集到的信息,并尝试预测下一个单词。
这两个步骤使得 Transformer 能够充分利用现代 GPU 的大规模并行处理能力,同时也帮助模型处理长序列,这是早期语言模型面临的挑战。
注意力机制
注意力机制是 Transformer 的一个关键组成部分,它让模型能够关注到输入序列中的重要部分。在每个注意力步骤中,每个词都会制作一个检查表(称为查询向量),描述它寻找的词的特性。同时,每个词还会制作一个检查表(称为关键向量),描述它自己的特征。
神经网络通过将每个关键向量与每个查询向量进行比较(通过计算点积)来找到最佳匹配的单词。一旦找到匹配项,它将从产生关键向量的单词传递相关信息到产生查询向量的单词。
注意力头和层
每个 Transformer 层都有多个注意力头,这意味着,信息交换过