一、LLM微调的主要方法
LLM模型的出现早已引爆了大模型微调的热度。目前微调的方法主要包括全参数微调、某层微调等。
Fine-Tuning:指的是全参数的微调方法,它在预训练模型的基础上进行进一步的训练,以适应特定的任务。Fine-Tuning 方法的优点在于它简单且直观,但可能需要较大的计算资源,特别是对于大型语言模型。
Layer-wise Fine-Tuning:这种方法只对模型的某些层进行微调,通常是最后几层。这种方法的优点是计算成本较低,因为只有部分参数需要更新。
Low-Rank Adaptation (LORA):这种方法首先找到模型中的一个低秩子空间,然后在这个子空间中进行优化。这种方法的优点是计算成本低,且可以避免过拟合问题。
Adapter Tuning:这种方法在模型的每一层中添加了一个小的、可训练的适配器。优点是原始模型的所有参数都可以被冻结,只需要训练适配器的参数,大大减少了训练成本。
二、LoRA微调方法的独特性
与其他传统的微调(Fine-Tuning)方法相比,最近源自于LoRA微调方法比较火爆,这是因为其有以下独特之处:
高效性:LoRA 的独特之处在于它只调整模型中的一小部分参数,而不是所有参数。这意味着需要进行训练的参数数量大大减少,从而显著降低了计算需求和训练时间。这使得 LoRA 方法非常适合用于大型语言模型的微调,如 GPT-3 或 BERT,这些模型可能有上亿甚至数百亿的参数。
抗过拟合:由于 LoRA 只调整模型中的一小部分参数,因此它可以降低过拟合的风险。当我们在小型数据集上训练大型模型时,过拟合尤其是一个问题,因为模型可能会记住训练数据的特定细节,而不能很好地泛化到新的数据。通过减少需要优化的参数数量,LoRA 可以降低这种风险。
灵活性:LoRA 通过在模型的权重矩阵中找出一个低秩子空间进行优化,这个子空间可以根据具体的任务需求进行选择。这提供了一种灵活的方式,可以根据具体任务的需求对模型进行微调。
适应性:LoRA 能够适应模型