- 博客(102)
- 资源 (2)
- 收藏
- 关注

原创 线下零售数据采集:在精度与效率之间寻找平衡点
采集系统的精度与效率,并不仅仅是执行层的小问题,而是决定零售行业能否迈向智能驱动时代的基础设施问题。如果停留在局部最优,整个行业将继续受限于低效采样、人工修正、缓慢响应的旧范式。只有在数据采集层面实现质变,零售智能化才能真正实现从辅助决策到主动优化的跃迁。每一次更高效、更精准的采集迭代,都是行业向前的一小步,也是决定性的一步。
2025-04-28 09:01:56
1850
原创 创业公司深度分析 Veritus Agent :AI 驱动的金融催收变革者
Veritus Agent是一家为消费贷款行业提供AI代理平台的金融科技公司,通过自动化语音、短信等渠道优化贷款催收流程。其核心技术结合语音AI与监管合规系统,显著降低催收成本并提高回收率。创始团队汇集呼叫中心软件、安全工程和支付系统开发等领域的资深专家,已获得YC等机构支持。公司面临AI技术迭代、金融监管合规等挑战,但凭借垂直领域专注度和技术创新展现出较强竞争力。其商业模式包括SaaS许可和直接债务购买,瞄准美国万亿级信贷市场的效率提升需求。
2025-09-10 19:30:33
318
原创 [AI创业公司Everest] 别再“人工”处理工单了:这家初创公司想用AI取代IT工程师?
Everest是一家专注于为外包IT服务商(MSPs)提供AI解决方案的B2B SaaS公司。其核心产品包括AI工单处理和自动化服务,旨在将行业利润率从10-20%提升至70-80%。公司拥有来自Netflix、微软等知名企业的创始团队,已入选YC 2025秋季项目,并集成主流IT管理工具。虽然面临技术迭代和市场竞争等风险,但其AI驱动的效率提升和3000亿美元的市场潜力构成显著优势。关键挑战在于如何快速获得中小企业客户认可并保持技术领先性。
2025-09-09 19:56:26
233
原创 [论文阅读] REFRAG:Meta超级智能实验室的开山之作,是效率革命还是工程优化?
Meta超级智能实验室的首篇论文《REFRAG》提出了一种优化RAG任务效率的创新方案。其核心是通过预计算块嵌入和持续预训练,将首字生成时间最高加速30.85倍,同时扩展16倍上下文窗口。技术亮点包括语义缓存机制和轻量级RL策略,但本质是对现有RAG流程的工程优化,而非理论突破。尽管在速度和通用性上优于竞品,该方案仍需权衡预训练成本、生态锁定等代价。研究团队展现了解决工业痛点的务实能力,但距离"超级智能"仍有差距。该技术适合高检索质量场景,建议从业者根据实际需求选择性采用简化版本。
2025-09-08 19:21:25
668
原创 一份可落地的行业大模型方案:如何用10万元在边缘一体机上打造专属AI?
低成本行业大模型落地方案:10万元打造边缘AI 本文提出了一套实践验证的低成本行业大模型解决方案,重点解决中小企业应用AI的高门槛问题。方案采用"减法思维",避免昂贵的预训练和复杂RLHF,转而使用Qwen3-8B基座模型+DPO微调技术,仅需1-2万条结构化数据即可完成定制。通过SFT微调、DPO对齐和4bit量化三个关键步骤,最终模型可压缩至4.5GB,在4万元级国产边缘设备上稳定运行。整套方案包含数据构造技巧、工具调用方法和成本控制策略,总投入控制在10万元内,相比传统方案节省80
2025-09-08 15:47:37
375
原创 论文介绍:Fast3R,更快的多视图 3D 重建的新范式
Fast3R提出了一种基于Transformer的多视图3D重建新范式,通过单次前向传播并行处理上千张图像,显著提升了重建效率。与传统的DUSt3R方法相比,Fast3R直接输出统一坐标系的全局点云,避免了复杂的成对处理和迭代对齐,计算效率提升30倍以上。其核心创新在于Transformer架构的全局上下文捕获能力和"位置插值"训练策略,使模型能够泛化处理远超训练时图像数量的输入。实验表明,Fast3R在相机姿态估计和3D重建任务上达到SOTA性能,为大规模场景重建提供了高效解决方案。
2025-09-04 15:32:53
1365
原创 【深度解密】玩转深度相机:从原理到实战,彩色与深度图像完美融合!
在计算机视觉和机器人领域,深度相机扮演着越来越重要的角色。它们不仅能捕捉我们熟悉的彩色图像,还能提供宝贵的三维深度信息,为机器“看懂”世界提供了更全面的视角。然而,不同的传感器采集到的数据往往存在坐标系、分辨率和视场角(FoV)的差异,如何将这些信息精确对齐,实现彩色图像与深度信息的完美融合,是许多开发者面临的挑战。本文将深入浅出地剖析深度与彩色图像对齐的原理,提供详细的数学模型和实施步骤,并附上一个基于Intel RealSense SDK的Python实战代码示例。
2025-09-04 10:40:48
1128
原创 论文介绍:“DUSt3R”,让 3D 视觉从“繁琐”走向“直观”
DUSt3R 是一项革命性的 3D 视觉技术,它将复杂的几何重建流程简化为单一的深度学习回归任务。不同于传统方法依赖相机参数和几何计算,DUSt3R 直接从一组未经校准的 2D 图像中预测出点图(pointmaps),即 2D 像素与 3D 坐标的密集映射。通过一个创新的全局对齐过程,这些点图被融合成一个完整的、彩色的 3D 点云。这一方法不仅在单目和多视角深度估计、相机姿态估计等任务上达到了最先进(SoTA)的水平,更重要的是,它实现了真正的端到端重建,并能从结果中反向推导出相机内外参,极大地降低了 3D
2025-09-03 20:39:08
866
原创 从对齐的RGB-D图像生成彩色点云:理论与实现
本文系统介绍了从对齐RGB-D图像生成彩色点云的技术原理与实现方法。首先阐述了相机成像几何模型和深度感知原理,包括针孔相机模型和坐标变换公式。然后详细推导了从像素坐标到3D点云的逆投影数学过程,提出向量化计算优化方法。在算法实现部分,给出了预处理、核心计算和后处理的完整代码框架,并对比了不同实现方式的性能差异。文章还讨论了深度-颜色对齐、有效数据筛选等关键技术问题,为构建高质量彩色点云提供了理论依据和实用解决方案。
2025-09-03 11:37:51
378
原创 AI零售创业公司:零眸智能
零眸智能是一家专注于零售AI技术服务的创业公司,通过多模态大模型和Agentic AI架构,致力于提升零售业的运营效率。其核心产品包括高精度SKU识别、陈列合规和价格标签OCR等,识别准确率超过98%。公司已在全球75个国家开展业务,并与北美零售科技公司Vision Group达成战略合作,加速全球化布局。
2025-09-02 20:07:26
815
原创 AI创业公司 Burnt:要做食品供应链的Agentic Operating System
Burnt是一家AI创业公司,致力于为食品供应链构建Agentic Operating System。其核心产品AI代理Ozai,能够自动处理来自电子邮件、电话和WhatsApp等渠道的非结构化订单数据,并直接将其输入至现有ERP系统,从而将分销商的团队从繁琐的订单录入工作中解放出来,专注于维护客户关系。公司创始团队背景深厚,融合了食品供应链运营、产品设计与后端系统开发等多领域专长。目前,Burnt已获得Y Combinator支持,并成功帮助客户实现了97%的订单自动化。
2025-09-01 15:44:07
646
原创 造神,然后弃神:AI行业的期望陷阱
在人工智能的竞技场上,科技巨头正发动一场激烈的“造神运动”:通过不断发布超越现实的演示和模型,刻意推高社会对技术的期望,从而重新划定“先进”与“落后”的边界。这种策略本质上是争夺认知主导权的文化霸权行为,旨在将行业纳入自身设定的发展轨道。然而,“造神易,成神难”。宣称“全能”的AI一旦出现事实错误或逻辑缺陷,便会从“神坛”跌落,触发信任危机。人类不会永久沉迷于技术狂欢,正逐渐从被动的技术消费者转变为主动的批判性使用者,通过提示词工程等技术夺回主导权。
2025-08-28 09:50:13
441
原创 AI创业公司:Freya 金融语音AI Agent
Freya是一家专注于为金融服务业提供合规语音AI代理的初创公司,其解决方案能24/7处理多语言客户支持,并确保符合行业监管要求。创始团队由AI专家Tunga Bayrak和金融背景的Tomas Nepala组成,技术商业互补性强。公司采用SaaS模式,目前处于YC孵化阶段。主要优势在于高度定制化的合规AI方案,但面临技术成熟度验证、大厂竞争和严格监管等挑战。其产品定位精准解决金融业客户服务痛点,但市场接受度和规模化能力仍需观察。
2025-08-25 20:16:29
667
原创 阿里生态的“内循环价值体系”
中国电商生态通过构建复杂的“内循环价值体系”,实现了极致效率与超低价格。该体系以全面数字化为基础,将生产、物流与消费数据深度融合,形成精准供需匹配。核心在于平台创建了内部信用符号(如“平台元”),通过应收账款抵押和信贷规则,使资金在体系内近乎零成本循环,大幅降低交易损耗。平台通过控制流量和外部结算等“锚定物”维持系统稳定,并借助内部价值循环产生的效率红利,最终向消费者让利,实现13元包邮鱼竿等价格奇迹。这一模式体现了“新质生产力”在流通领域的深刻应用,是数字时代资源优化配置的典型代表。
2025-08-22 19:50:28
80
原创 AI创业公司简介:Pogo
Pogo:金融科技应用助力用户数据变现 Pogo是一款移动金融科技应用,帮助200万美国用户通过数据变现实现赚钱和省钱。其核心功能包括自动消费返现、智能省钱方案和数据使用报酬。Pogo采用双向变现模式,通过商家佣金和用户奖励形成收入循环。公司构建了美国最大的用户数据货币化社区,并建立了数据安全壁垒。创始人Dom Wong拥有丰富的投资和创业经验。2025年完成A轮融资,已实现8位数收入和3倍年增长。尽管面临技术复制、监管合规等挑战,Pogo凭借先发优势、用户规模和精准定位,抓住了数据隐私变革的机遇。
2025-08-21 23:09:08
803
原创 AI 创业公司分析报告:RealRoots
RealRoots创业公司分析摘要 RealRoots是一款AI驱动的女性社交应用,通过语音分析精准匹配用户并组织线下引导活动,帮助成年女性建立长期友谊。核心团队CEO Dorothy Li(Cambly创始成员)和CPO Tara Kappel(Brilliant前VP)具备运营规模化和数据产品化能力。公司入选YC 2025夏季批次,商业模式采用订阅制,但面临线下扩张成本高、大厂竞争等风险。亮点在于精准切入女性孤独痛点,但需验证经济模型并解决隐私与规模化挑战。
2025-08-20 22:51:52
636
原创 35岁对工作的一些感悟
35岁职场人的5点工作感悟:1.结果导向,先解决核心问题再补基础;2.避免钻牛角尖,先完成80%再完善细节;3.高手并非天赋异禀,拆解方法可复制;4.关注全流程而非单点问题,提升全局观;5.找到成长复利,做减法聚焦核心,做加法放大优势。这些经验来自实际工作教训,强调效率优先、全局思维和可持续成长。
2025-08-19 19:54:14
345
原创 AI创业公司:Uplift AI,巴基斯坦的语音大模型
Uplift AI专注于巴基斯坦五种主要语言的语音AI技术开发,解决当地42%成人文盲群体的数字服务需求。公司拥有端到端技术栈,在Balochi等语言上成本效益优于竞品60倍。创始团队来自Apple Siri和Amazon Alexa,技术成熟度评分为3/5,已实现小规模试点。巴基斯坦4110亿美元GDP市场存在明显技术窗口期,但面临模型稳定性、数据合规等风险。未来3-6个月关键目标包括:将SLA可用性提升至95%,单次推理成本降至$0.005,生产客户数从5家增至20家。公司差异化优势在于未服务语言的专注
2025-08-18 19:59:39
545
原创 AI创业公司分析:Paloma
Paloma是一家2025年成立的旧金山初创公司,开发基于自然语言处理的模块化报价到现金平台。其技术成熟度评为3/5分,NLP技术应用处于早期阶段,目前正进行小规模试点测试。创始团队来自Deel和Revolut等独角兽企业,具备丰富经验。该平台瞄准B2B市场报价和计费系统的痛点,利用AI技术提供差异化解决方案。尽管面临技术准确性和市场竞争等风险,但凭借团队执行力和市场机遇,Paloma计划在未来6-12个月推出标准化产品,并通过客户试点和功能迭代实现技术验证。
2025-08-15 16:27:33
852
原创 AI创业公司分析报告:Blue
摘要: Blue是一家聚焦语音控制技术的AI初创公司(2024年成立),其创新产品通过LLM模拟触屏操作,实现免提控制所有手机应用,突破传统语音助手的功能局限。核心团队由Google、Apple前技术专家组成,拥有专利壁垒与硬件集成优势,但面临技术可靠性(如误操作风险)、巨头竞争及用户接受度等挑战。目前处于萌芽期,Android版已上线,未来可能定义“免提交互”新标准,或受限于垂直场景。成败关键取决于技术突破与市场教育能力,其探索将重新定义人机交互边界。(149字)
2025-08-14 10:06:44
652
原创 以任务为中心的智能推荐系统架构设计:原理、实现与挑战分析
本文针对复杂业务流程中智能推荐系统面临的全局状态空间爆炸、规则维护困难等问题,提出以任务为中心的架构设计。通过聚焦任务节点及其局部上下文,结合规则引擎和语义匹配技术,构建了灵活高效的推荐系统。文章详细阐述了架构设计理念、关键模块实现及技术挑战应对方案,包括任务库设计、局部上下文抽取、规则与语义匹配融合等方法。该架构有效降低了系统复杂度,提升了推荐准确性和维护效率,为复杂业务场景下的智能推荐系统建设提供了创新思路和实践参考。
2025-08-08 13:18:48
774
原创 一些观察:关于招聘算法实习生和工程师的五点思考
这篇文章分享了面试算法实习生和工程师过程中的五点观察与建议: 实习生与应届生能力接近,建议深入研究系统架构而非仅复现项目; 小公司算法工程师经历较杂,需梳理技术主线并沉淀经验; 代码习惯工具化,但C++仍是核心系统的关键,需保持动手能力; 数据理解能力不足,建议多处理原始脏数据并掌握ETL工具; 需从“做题思维”转向系统思维,参与完整项目以提升架构能力。 文章强调潜力需要清晰路径,并肯定认真钻研技术的人。
2025-08-05 10:00:40
596
原创 用 SuperPoint + LightGlue 精准重建低纹理目标:从原理到实践
本文深入探讨如何利用 SuperPoint 与 LightGlue 实现低纹理场景下的高精度三维重建。针对传统 SfM 方法在纹理稀缺环境中特征提取和匹配失败的问题,作者提出通过调整 SuperPoint 的特征密度与阈值、结合 LightGlue 的鲁棒匹配能力,有效提升配准成功率与重建完整度。文章不仅剖析算法优势与适配策略,还提供实测效果对比和部署建议,适合科研、测绘、文保等复杂环境下的实际应用。
2025-07-24 10:15:43
788
原创 Hierarchical-Localization 安装与常见问题解决手册
提供了全面的hloc工具箱使用指南,该工具箱基于深度学习,支持多种特征提取与匹配方法,广泛应用于图像定位和三维重建任务。手册从详细的环境搭建和依赖安装(包括解决国内网络访问GitHub/PyPI的痛点)入手,继而系统地罗列并给出了多种常见问题的解决方案,例如MATLAB格式权重文件的兼容性问题、NumPy 2.x与PyTorch等依赖的版本冲突、以及因hloc对Path类型参数和特定命名规则的偏好而导致的路径或参数不匹配错误。
2025-07-23 17:50:28
950
原创 OpenMVG & OpenMVS 安装全流程常见问题与解决方法总结
本文总结了OpenMVG和OpenMVS三维重建工具链安装过程中的常见问题及解决方法。主要问题包括:依赖包缺失、GitHub下载失败、Python3找不到、GCC/CUDA版本不兼容、OpenCV版本过低、VCGLib未找到等。文章提供了详细的解决方案,如安装特定版本依赖、设置环境变量、源码编译等操作指南。同时针对Docker构建问题,给出了优化构建顺序和使用缓存的建议。推荐使用Ubuntu 22.04 + GCC 11 + CUDA 11.8/12.2的兼容环境组合,可有效减少安装过程中的报错。
2025-07-22 19:47:30
1048
原创 从 COLMAP 到 3D Gaussian Splatting
随着NeRF和3D Gaussian Splatting等新技术的崛起,三维重建已进入“系统集成优先”的工程阶段。本文从实用角度出发,梳理了COLMAP、RGB-D、3DGS等主流方案的优劣对比,覆盖从建模输入、算法选择、Mesh导出到GPU/CPU部署的全链条实践路径。针对不同精度、预算与交付周期的需求,提供了一张清晰的选型路线图,并辅以实际脚本与经验建议,助力团队在1天内完成评估,1周内原型验证,1个月内产品交付。
2025-07-22 19:03:47
1261
原创 3D Gaussian Splatting (3DGS) 从入门到精通:安装、训练与常见问题全解析
本指南全面总结 3D Gaussian Splatting (3DGS) 从安装到渲染的常见问题。重点包括:环境配置: 确保 Python (Conda)、PyTorch 与 CUDA 版本精准匹配,注意 numpy 兼容性。COLMAP 与 Ceres 编译: 解决 Abseil-CPP 配置、GCC/CUDA 兼容性及依赖缺失问题。数据准备: 视频转图片,COLMAP 稀疏重建后,利用脚本将数据转换为 3DGS 兼容格式。训练与渲染: 解决训练参数、CUDA/PyTorch 扩展 ABI
2025-07-17 19:18:59
2389
原创 COLMAP 编译全流程问题与解决方案汇总【含Ceres/absl/CUDA/GCC/CMake 报错详解】
本文针对Ubuntu 24.04环境下Ceres Solver和COLMAP的编译问题,提供了从源码到部署的完整解决方案。重点解决了abseil-cpp依赖、CMake配置和CUDA兼容性等核心问题,包含: absl版本冲突的三种修复方案(版本指定、配置生成、动态库转换) COLMAP依赖缺失的五种应对方法(手动下载、路径配置、环境变量设置) GCC/CUDA兼容性问题处理(编译器版本切换) 静态库链接问题的-fPIC解决方案 提供
2025-07-17 13:10:27
1064
原创 领域特定知识的智能管理与应用:三位一体解决方案
本文提出一套基于大型语言模型(LLM)、语义向量检索和知识图谱的三位一体解决方案,用于领域特定知识的管理与应用。首先利用LLM从非结构化数据中智能抽取实体和关系,构建结构化知识图谱;其次通过语义向量检索实现模糊意图匹配,结合过程型知识图谱提供实时动态洞察;最后通过归档型知识图谱支持深度推理与知识沉淀。三者协同工作,形成一个从知识捕获到智能应用的完整闭环,实现了领域知识的高效管理、精准查询和智能应用。该方案克服了单一技术的局限性,为各行业处理海量领域数据提供了有效路径。
2025-07-15 10:52:49
927
原创 Dify对比主流大模型开发框架:Langchain、LlamaIndex、n8n,谁更适合企业落地?
Dify的优势在于“快速开发与可落地”,但在大规模企业应用中,必须强化分布式部署与定制扩展能力。与Langchain、LlamaIndex等底层框架相比,Dify代表了一种“中台即服务(PaaS)”的发展趋势,有望在企业智能化转型中扮演重要角色。企业在选择框架时,关键在于明确自身业务需求、技术能力和成本投入,避免“盲选”而导致后期成本增加。
2025-05-29 10:19:20
1091
原创 零售智能执行大模型架构设计:从空间建模到上下文推理,再到智能Agent
我们提出一套基于多阶段大模型的零售执行智能架构,将空间建模、上下文推理与智能Agent系统整合为统一体系,目标是构建未来10年通用的零售智能基础设施。
2025-05-20 11:18:29
1109
原创 高级 LLM 应用架构设计建议手册:认知工具的正确打开方式
让系统更人性化让交互更自由但无论哪种,LLM 从来不是系统的主角。它是认知层,是语言转译器,是接口层的增强器。真正的主角,是你,是理解业务和系统的架构师!
2025-05-07 09:50:13
967
原创 融合静态图与动态智能:重构下一代智能系统架构
智能系统的未来不是全生成,而是在“边界内的智能决策”。我们呼吁用系统思维重构 LLM 应用架构,建立真正可用、可控、可落地的大模型应用体系。
2025-05-07 09:45:02
1303
原创 线下CPG零售的核心:POG与销量的循环优化
在CPG(Consumer Packaged Goods,快速消费品)领域,线下零售的核心在于之间的高效联动。简单来说,CPG品牌经理的关键任务之一,就是,通过销量反馈不断调整优化POG,进而持续提升销量,开启正向循环。:指商品在零售货架上最佳摆放方式的图形化表示,涵盖位置、排列、数量等信息。
2025-04-28 15:02:19
939
原创 从DistBelief看深度学习早期的并行化
从DistBelief看深度学习早期的并行化背景DistBelief是TensorFlow的前身,与TF的名扬天下如雷贯耳相比,DistBelief简直是不值一提,但是仔细琢磨就能发现,大部分深度学习框架的问题,在DistBelief里面就已经有了回答。其中就有今天要讨论的并行部分。一言以蔽之,深度学习,或者说机器学习,在工程上最大的难题就是满足大规模数据的要求。与摩尔定律相比,数据的爆发显然更令人惊讶,所以如何处理大规模数据,并从中学习到一个好的模型,是一个非常严肃的问题。大规模数据首先是大规模的
2021-01-12 17:05:23
1982
原创 CoreML 的 C++部署 [2] 模型类抽象
接上一篇CoreML 的 C++部署 [1] 模型转换和预处理再解决了预处理的问题后,部署部署还剩下模型类的抽象,主要包括初始化、推理以及获取输出。模型类的抽象什么是模型类?可以参考:CoreML模型分析我们是以MobileNetV2.mlmodel为例说明了mlmodel的结构。这里有一个预备知识,模型头文件中的类仅仅是对底层MLModel和MLFeatureProvider的封装。也就是说,每一个mlmodel,真正的实现是通过MLModel和MLFeatureProvider进行的,上层做
2020-12-31 11:11:07
1079
原创 Core ML简史
背景深度学习是最新一波技术发展的最大增长点,随着研究的深入和算力的发展,深度学习也逐渐从论文走到了实际应用。由于现在我们仍然处于移动互联网的成熟期,手机仍然是今年最通用的计算平台,所以深度学习不可避免的也要跑在手机上,这是技术+时代的共同需求。为了应对这个需求,科技行业的巨头们都提出了自己的解决办法,2017年3月,Google就在TensorFlow的基础上开源了TensorFlow Lite,目标就是完成移动端深度学习计算。Google做这个事情是非常好理解的,因为TensorFlow太重了,不太可
2020-12-30 17:43:24
2068
原创 CoreML 的 C++部署 [1] 模型转换和预处理
背景当写下这个题目的时候,我是有疑问的。为什么要用C++来部署CoreML?是OC不香还是Swift不甜了?如此简单的CoreML模型部署,使用OC或者Swift几行代码就搞定的事情,非要整一个C++版本,实属想不通,是真的想不通。。。可能唯一能够理解的是,当模型推理只是一个很大的功能中的一部分,而这个功能又无法快速通过OC或者Swift搞定的时候,还是需要将整个模型推理部分下沉到C++中,与其他底层逻辑保持一致。简单来说就是为了满足程序架构的完整性,就牺牲了开发中的便捷性。但是如果是上面这个理由,
2020-12-29 10:54:51
1797
原创 CoreML模型分析
准备工作首先得有一个Xcode以及一个简单的添加了CoreMLFramework的工程;下载模型,如官方推荐的MobileNetV2将模型导入到工程中,并添加到你的编译项目中双击打开,会看到这么一个页面:然后点击 就可以进入到模型自动生成的头文件中:模型分析1.关键词@interface通过搜索关键词interface,我们可以得到三个结果:@interface MobileNetV2Input : NSObject@interface MobileNetV2Output :
2020-12-23 20:09:15
1796
2
264学习总结
2016-10-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人