ubuntu20.04安装cuda11.4以及cudnn

  1. 系统:ubuntu20.04
  2. 硬件配置:GPU3080、CPU未知
  3. 通过《软件和更新》在附加驱动选项中添加了驱动:
    在这里插入图片描述
    1.检查自己电脑支持的cuda
 nvidia-smi

在这里插入图片描述
4. 下载cuda11.4.2

wget https://developer.download.nvidia.com/compute/cuda/11.4.2/local_installers/cuda_11.4.2_470.57.02_linux.run
sudo sh cuda_11.4.2_470.57.02_linux.run

会有卡顿,大概等1分钟;因之前安装了驱动,因此在下面的步骤中需要取消安装驱动。

  1. Continue
  2. accept
  3. 取消Driver
    在这里插入图片描述
    在这里插入图片描述
    添加环境变量:
gedit ~/.bashrc
#添加:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda
#保存退出
source ~/.bashrc

测试CUDA

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make -j4
./deviceQuery
--------------------------显示-----------------
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.4, NumDevs = 1
Result = PASS

安装CUDNN
https://developer.nvidia.com/cudnn (现在需要先登录才能下载)
下载cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz
下载成功后解压复制

tar zxvf cudnn-11.4-linux-x64-v8.2.4.15.tgz

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
Ubuntu 20.04默认不包含CUDA 11.4,因为这是较新的版本,而Ubuntu 20.04支持的是CUDA 10.x系列。然而,如果你想在Ubuntu 20.04安装CUDA 11.4并配合PyTorch使用,你需要手动下载、配置并构建CUDAcuDNN。 以下是步骤概述: 1. **获取CUDAcuDNN**: 访问 NVIDIA 的官方文档下载 CUDA Toolkit for Ubuntu 20.04cuDNN Library。记得选择对应Python版本的版本,比如`cuDNN 8.0`通常适用于`PyTorch 1.9`。 2. **安装依赖**: - 安装Linux发行版所需的额外软件包,如gcc、cmake等。 ```bash sudo apt-get update && sudo apt-get install -y build-essential cmake libncurses5-dev libssl-dev libcurl4-openssl-dev git pkg-config libelf-dev libopenblas-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler libprotobuf-dev liblz4-tool ``` 3. **下载并解压CUDA**: ```bash wget https://developer.nvidia.com/compute/cuda/11.4.0/local_installers/cuda_11.4.0_465.19.01_linux.run ``` 4. **安装CUDA**: 运行安装脚本,并按照提示操作,选择合适的路径安装。 5. **配置环境变量**: 需要在`.bashrc`或`.bash_profile`文件中添加环境变量指向CUDA安装路径。 6. **安装cuDNN**: 下载cuDNN压缩包,然后解压并在CUDA安装目录下设置库路径。 7. **安装PyTorch**: 使用Conda创建一个新的虚拟环境,并安装特定版本的PyTorch: ```bash conda create -n torchenv python=3.8 torchvision cudatoolkit=11.4 -c pytorch conda activate torchenv pip install torch==1.9.0+cu114 torchaudio torchvision -f https://download.pytorch.org/whl/torch_stable.html ``` 8. **验证安装**: 在新环境下运行一些基本的PyTorch示例,确认CUDA和PyTorch已经成功安装
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值