“华为杯”研究生数学建模竞赛2020年-【华为杯】A题:载波恢复算法设计及实现(附获奖论文及matlab代码实现)

该博客详细介绍了参加‘华为杯’研究生数学建模竞赛的A题解决过程,涉及载波恢复算法的设计和实现。通过16QAM星座图、高斯白噪声影响分析、相位噪声建模、光纤色散补偿等关键步骤,构建模型并进行蒙特卡洛仿真检验,探讨了资源最优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

摘 要:

一、问题重述

1.1 问题的背景

1.2 问题的提出

二、问题分析

2.1 问题一分析

2.2 问题二分析

2.3 问题三分析

2.4 问题四分析

三、模型假设

四、符号定义与说明

五、模型建立与求解

5.1 问题一模型建立与求解

5.1.1 16QAM 星座图

5.1.2 高斯白噪声对星座图的影响

5.1.3 蒙特卡洛方法计算误码率

5.1.4 光纤的色散补偿

5.1.5 相位噪声建模

5.1.8 N 对 BER 的影响

5.1.9 问题一的求解与结果分析

5.2 问题二模型建立与求解

5.2.1 Pilot 开销和线宽关系的定量求解

5.3 问题三模型建立与求解

5.3.1 定点数位宽的初步分析

5.3.3 定点量化噪声对性能的影响

5.3.4 考虑定点量化噪声的资源最优化模型

5.4 问题四模型建立与求解

5.4.1 模型的梗概

5.4.2 指标的去量纲化处理

5.4.3 综合代价函数模型及求解

六、 模型检验

6.1 蒙特卡洛仿真检验

七、模型总结与评价

7.1 模型优点

7.2 模型缺点与改进方向

参考文献  

代码实现 

 代码 1,用于计算 SNR-BER 曲线,确定 RSNR 点:

 代码 2,用于生成相位噪声并计算功率谱:

 代码 3,用于计算 N 与 BER 的关系:

代码 4,用于计算 M 及与 BER 的关系:  


摘 要:

光通信技术构建起了全球通信的骨架。光传送链路建模与建设是运营商、设备商以及
政府必须考虑的课题。光数字信号处理芯片以即时处理资料的特性被广泛应用,本文针对
芯片的一种典型的载波恢复( CR )算法进行研究,分别讨论了在多种情况下算法的最优工
程设计方案。
针对问题一,本文首先确定了 16QAM 由格雷映射进行编码的矩形星座图,随后根据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值