Keras之model.fit_generator()的使用

Keras 的 model.fit_generator() 方法允许通过生成器来训练模型,有效避免内存瓶颈。在每个 epoch 中,它会按 steps_per_epoch 参数指定的次数从 generator 获取数据。此外,验证数据和步骤也可定制,如 validation_data 和 validation_steps,以监控模型性能。该方法还支持回调函数,如模型保存和学习率调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Keras之model.fit_generator()的使用


model.fit_generator()是利用生成器,分批次向模型送入数据的方式,可以有效节省单次内存的消耗

一、使用方式

1.引入库

代码如下(示例):

from keras import models
model.fit_generator(
            train_gen,
            steps_per_epoch=int(len(train[0]) / batch_size),
            epochs=MAX_EPOCHS,
            validation_data=dev_gen,
            validation_steps=int(len(dev[0]) / batch_size),
            callbacks=[checkpointer, reduce_lr, stopping])

2.参数解释

代码如下(示例):

fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, \
callbacks=None, validation_data=None, validation_steps=None,\
 class_weight=None, max_q_size=10, workers=1, pickle_safe=False, initial_epoch=0)

generator:指需要训练的训练集
steps_per_epochs:是指在每个epoch中生成器执行生成数据的次数
epochs:指训练迭代的次数
verbose:日志的显示模式,取 1 时表示“进度条模式”,取2时表示“每轮一行”,取0时表示“安静模式”;
validation_data:验证集
validation_steps:指验证集的情况,类似于steps_per_epoch

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值