Datawhale AI 夏令营-task2
笔记来源:Datawhale AI 夏令营
深度学习是什么
深度学习是机器学习的一个分支,使用神经网络模拟人脑的学习方式,从大量数据中自动学习与提取特征,进行预测与决策。
深度学习依赖于多层神经网络,每一层神经元接受前一层神经元的输出,并通过权重与激活函数进行计算,传递到下一层神经元。
神经元模型
神经元模型是模拟生物神经元行为的计算模型,它在人工智能和机器学习领域扮演着核心角色。
神经元就像人体大脑中的微小开关,能够接收来自其他神经元的信号,并根据这些信号的产生反应。
在人工智能中,我们用数学模型来模拟这种生物神经元的行为。
一个简单的神经元模型包括输入、权重、激活函数和输出。
- 输入就像神经元 树突 接收到的信号,
- 权重则像是调整信号强度的小调节器,
- 激活函数决定是否产生输出,
- 而输出则是传递给其他神经元的信号。
从机器学习到深度学习
机器学习:通常使用相对简单的算法(如线性回归、决策树)处理数据。需要人工设计特征工程来提高模型性能。
深度学习:通过深层神经网络自动学习特征,能够处理和学习高维度和复杂的数据模式,适用于图像识别、自然语言处理等复杂任务。
深度学习的训练方式
梯度下降是一种优化算法,用于最小化函数。
梯度下降算法基于这样一个原理:损失函数的梯度指向函数增长最快的方向。
因此,如果我们希望减少损失函数的值,我们就需要沿着梯度的反方向调整模型的参数。
这样,每次迭代都会使模型参数朝着减少损失的方向移动。
在深度学习中,我们希望最小化损失函数,即模型预测值与真实值之间的差异。
梯度是损失函数关于模型参数的导数,它指示了参数的调整方向,以减少损失函数的值。
在pytorch中的代码
def train(train_loader, model, criterion, optimizer, epoch):
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
深度学习与迁移学习
迁移学习是一种机器学习技术,它将已在一个任务上学到的知识(如模型参数、特征表示等)应用到另一个相关任务上。
这种技术特别有用,因为它允许模型在数据稀缺的情况下也能表现出色。
通常使用在大规模数据集上预训练的模型作为起点,例如在ImageNet数据集上预训练的卷积神经网络(CNN)。
在预训练模型的基础上,使用少量标记数据对模型进行微调,以适应新任务。
ImageNet的介绍
ImageNet 包含超过1400万张注释过的图像,这些图像分布在超过2.2万个类别中。它的规模之大使得它成为深度学习模型训练和评估的理想数据集。ImageNet 数据集中的图像包含了各种场景、物体、背景和遮挡情况,这为算法提供了极大的挑战。这种多样性使得在 ImageNet 上训练的模型能够学习到鲁棒的特征,从而在现实世界应用中表现良好。
ImageNet 提供了一个标准的性能基准,研究者可以通过在 ImageNet 上的表现来比较不同模型的性能。此外许多在 ImageNet 上预训练的模型被用作迁移学习的起点,这些模型在新任务上通常表现出色。
迁移学习的实现方法
微调(Fine-tuning)是深度学习中一种有效的迁移学习策略,它允许我们利用预训练模型对特定任务进行优化。
其基本原理是,首先在一个大规模的数据集上预训练一个深度学习模型,捕捉通用的特征表示,
然后将这个预训练模型作为起点,在目标任务上进行进一步的训练以提升模型的性能。
微调的过程通常开始于选择一个在大型数据集上预训练的模型,这个预训练模型已经学到了丰富的特征表示,这些特征在广泛的领域内都是通用的。接着,我们将这个预训练模型适配到新的目标任务上。适配过程通常涉及以下步骤:
- 我们会替换模型的输出层,以匹配目标任务的类别数量和类型。例如,如果目标任务是图像分类,而预训练模型原本用于不同的分类任务,我们就需要将模型的最后一层替换成适合新任务类别数的新层。
- 【可做可不做】我们冻结预训练模型中的大部分层,这样可以防止在微调过程中这些层学到的通用特征被破坏。通常情况下,只对模型的最后一部分层进行解冻,这些层负责学习任务特定的特征。
- 使用目标任务的数据集对模型进行训练。在这个过程中,我们会用梯度下降等优化算法更新模型的权重,从而使模型能够更好地适应新的任务。训练时,可能会使用比预训练时更低的学习率,以避免过度拟合目标数据集。
在下面代码中,timm.create_model('resnet18', pretrained=True, num_classes=2)
这行代码就是加载了一个预训练的ResNet-18模型,其中pretrained=True
表示使用在ImageNet数据集上预训练的权重,num_classes=2
表示模型的输出层被修改为有2个类别的输出,以适应二分类任务(例如区分真实和Deepfake图像)。通过model = model.cuda()
将模型移动到GPU上进行加速。
import timm
model = timm.create_model('resnet18', pretrained=True, num_classes=2)
model = model.cuda()
常见的图像分类
图像分类是计算机视觉中的一个基本任务,它涉及到将给定的图像分配到一个或多个预定义的类别中。随着深度学习的发展,已经设计出许多不同的卷积神经网络(CNN)架构来提高图像分类的准确率。
AlexNet
AlexNet是一种具有深远影响的卷积神经网络(CNN)架构,由Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton设计。
它在2012年的ImageNet大规模视觉识别挑战赛(ILSVRC)中取得了突破性的成绩,大幅度超越了之前的图像分类技术(非深度学习技术)。
AlexNet包含八个层次结构,前五个是卷积层,其中一些后跟最大池化层,最后三个是全连接层。具体结构如下:
- 卷积层:AlexNet的前五个层次都是卷积层,每个卷积层后面跟着一个ReLU激活函数,以引入非线性。这些卷积层旨在提取图像的特征。
- 局部响应归一化(LRN):在某些卷积层后使用了局部响应归一化,这是一种提高模型泛化能力的正则化方法。
- 最大池化层:在部分卷积层之后使用最大池化层来降低特征的空间维度,减少计算量和过拟合的风险。
- 全连接层:网络的最后三个层次是全连接层,其中最后两个全连接层后跟有Dropout,以进一步防止过拟合。
- 输出层:最后一个全连接层后是线性层,然后是softmax激活函数,输出1000个类别上的概率分布。
ResNet
ResNet(残差网络)是一种深度卷积神经网络架构,由微软研究院的研究员何恺明等人提出。ResNet在2015年的ImageNet图像识别大赛中取得了冠军,并在深度学习领域产生了重大影响。它的主要创新点是引入了残差学习的概念,允许训练非常深的网络,从而缓解了深度神经网络训练中的梯度消失和梯度爆炸问题。
ResNet的核心是残差块(residual block),网络通过堆叠这些残差块来构建。一个基本的残差块包含以下几部分:
- 跳跃连接(Skip Connections):这是ResNet最关键的创新,通过跳跃连接,输入可以直接绕过一个或多个层传到输出,输出是输入与这些层的输出的加和。这种结构使得网络可以学习输入到输出的残差,而不是直接学习输出,这有助于缓解梯度消失问题。
- 卷积层:残差块内部包含多个卷积层,通常使用小尺寸的卷积核(如3x3),并且通常会有批量归一化(Batch Normalization)和ReLU激活函数。
- 池化层:在某些残差块之间会插入最大池化层来降低特征图的空间维度。
ResNet有多个变种,包括ResNet-50、ResNet-101、ResNet-152等,数字代表了网络中权重层的数量。
这些变种在网络的深度和宽度上有所不同,但都基于相同的残差学习架构。
ResNet能够成功训练超过100层的网络,这在之前是不可能实现的。
在ImageNet竞赛中,ResNet取得了3.57%的错误率,远低于之前的表现最好的模型。
EfficientNet
EfficientNet是一种高效的卷积神经网络(CNN)架构,它通过一种新颖的网络缩放方法来提升模型的性能和效率。EfficientNet 的核心是其 compound scaling 方法,该方法通过一个复合系数统一缩放网络的深度、宽度和分辨率。在过去,网络缩放通常是通过任意选择深度、宽度或分辨率的增加来实现的,而EfficientNet的方法则是通过一系列固定的缩放系数来同时增加这三个维度。例如,如果想要使用更多的计算资源,可以通过增加网络深度、宽度和图像大小的特定比例来实现,其中的比例系数是通过在小型模型上进行小规模的网格搜索确定的。
EfficientNet的复合缩放方法的直觉在于,如果输入图像更大,网络就需要更多的层来增加感受野,以及更多的通道来捕捉更细粒度的模式。EfficientNet的架构本质上并不复杂。基本的EfficientNet-B0网络作为后续缩放的基础。作者指出,他们使用NAS来构建基本网络,利用了多目标搜索来同时优化网络的准确性和计算效率。