windows python 调用yolo dll,self._handle = _dlopen(self._name, mode) OSError: [WinError 126] 找不到指定的模块

本文探讨了如何解决在使用Python调用darknet的yolo_cpp_dll.dll时遇到的依赖错误,重点在于理解缺失的pthreadVC2.dll库及其对DLL加载的影响,并提供了正确加载DLL的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

darknet.py & darknet_video.py采用Python对darknet训练的模型进行测试,其中调用了yolo的DLL库。

(YOLO DLL 或 SO库 编译详见:

https://github.com/AlexeyAB/darknet   How to use Yolo as DLL and SO libraries板块。)

将编译完成的库文件 yolo_cpp_dll.dll 或 yolo_cpp_dll_no_gpu.dll 另存再加载时会产生报错:

from ctypes import *
winGPUdll = "./yolo_cpp_dll.dll"
lib = CDLL(winGPUdll, RTLD_GLOBAL)


File "C:\Users\xx\Anaconda3\lib\ctypes\__init__.py", line 351, in __init__
    self._handle = _dlopen(self._name, mode)

OSError: [WinError 126] 找不到指定的模块。

而在darknet-master\build\darknet\x64下加载dll时,不会出现该问题。

则原因定位为:加载yolo_cpp_dll.dll 时,该dll还依赖其他动态库, 需将其依赖的动态库一并拷贝,可调用成功yolo_cpp_dll.dll。 yolo_cpp_dll.dll依赖的库为:pthreadVC2.dll。只有pthreadVC2.dll也被Python访问到,方可load yolo_cpp_dll.dll。

<think>好的,我现在需要解决用户遇到的OSError: [WinError 1455]页面文件太小的问题。用户提到在运行深度强化学习的多进程程序时出现这个错误,特别是引用了Anaconda安装在D盘的情况,以及可能的CUDA内存不足的问题。首先,我得回想一下这个错误通常是什么原因引起的。 页面文件,也就是虚拟内存,当物理内存不足时,系统会用硬盘空间来临时扩展内存。如果页面文件太小,系统无法分配足够的内存给应用程序,特别是像多进程或者需要大量内存的深度学习任务,这时候就会报1455错误。用户的情况可能是在运行多进程程序时,每个进程都需要大量内存,导致虚拟内存不足。 接下来,我需要确定如何增加页面文件的步骤。根据引用中的信息,用户已经将Anaconda安装在D盘,所以可能需要调整D盘的页面文件大小,而不仅仅是系统盘(通常是C盘)。另外,错误信息中还提到了CUDA内存不足的情况,这可能与GPU显存有关,但页面文件的问题属于系统内存管理,两者可能同时存在,但需要分别处理。 首先,我应该指导用户调整虚拟内存的设置。步骤可能包括打开系统属性,进入高级系统设置,调整虚拟内存的大小。需要提醒用户选择正确的驱动器(比如D盘),并设置初始大小和最大值。通常建议设置为物理内存的1.5到3倍,但具体数值可能根据任务需求调整,尤其是深度学习任务可能需要更大的页面文件。 另外,用户可能还需要检查程序的内存使用情况,是否存在内存泄漏,或者是否可以优化代码减少内存占用。比如,减少并行进程的数量,或者调整数据批次的大小。同时,如果同时出现CUDA内存不足的错误,可能需要释放GPU资源,或者调整PyTorch的内存分配策略,如设置max_split_size_mb参数,但这属于另一个问题,用户可能需要分开处理。 还要注意,在修改虚拟内存后,需要重启计算机才能生效。此外,如果用户的D盘空间不足,也可能导致无法增加页面文件,因此需要确保目标驱动器有足够的可用空间。 最后,生成的相关问题需要覆盖其他可能相关的错误,比如CUDA内存不足的解决方法,或者如何优化多进程程序的内存使用,这样用户如果有其他相关问题也能得到帮助。</think>### 逐步解决方案:OSError [WinError 1455]页面文件太小 #### 1. **问题分析** - **错误原因**:系统虚拟内存(页面文件)不足,无法支持多进程或内存密集型任务(如深度学习训练)[^1][^2]。 - **常见场景**: - Anaconda安装在非系统盘(如D盘),但该盘未分配足够虚拟内存。 - 多进程程序或PyTorch等框架占用大量内存[^3]。 --- #### 2. **解决方案:调整虚拟内存** ##### **步骤1:打开虚拟内存设置** 1. 右键点击“此电脑” → 选择“属性” → 点击“高级系统设置”。 2. 在“系统属性”窗口中,选择“高级”选项卡 → 点击“性能”区域的“设置”。 3. 在“性能选项”窗口中,选择“高级”选项卡 → 点击“更改”按钮。 ##### **步骤2:自定义页面文件大小** 1. **取消勾选**“自动管理所有驱动器的分页文件大小”。 2. 选择Anaconda所在驱动器(如D盘) → 选择“自定义大小”。 3. 设置初始大小和最大值: - **建议值**:初始大小 = 物理内存的1.5倍,最大值 = 物理内存的3倍(例如物理内存16GB,则初始24576MB,最大值49152MB)。 - **深度学习任务**:可适当增大(如初始32768MB,最大值65536MB)。 4. 点击“设置” → 确定 → 重启计算机生效。 ![虚拟内存设置示意图](https://example.com/pagefile-settings.png) *图:调整D盘虚拟内存大小* --- ##### **步骤3:验证修改结果** 1. 重启后,按`Win + R`输入`perfmon /report`生成系统诊断报告。 2. 检查“虚拟内存”部分是否显示新分配的大小。 --- #### 3. **附加优化措施** - **释放内存占用**: - 关闭不必要的后台程序。 - 减少PyTorch数据加载的`num_workers`数量。 - **显存不足问题**: - 若同时出现`CUDA out of memory`,需降低模型批次大小(`batch_size`)或清理GPU缓存: ```python import torch torch.cuda.empty_cache() ``` --- #### 4. **代码示例(内存监控)** ```python import psutil def monitor_memory(): mem = psutil.virtual_memory() print(f"已用内存: {mem.used / 1024**3:.2f}GB / 总内存: {mem.total / 1024**3:.2f}GB") print(f"虚拟内存: {mem.swap_used / 1024**3:.2f}GB / 总虚拟内存: {mem.swap_total / 1024**3:.2f}GB") monitor_memory() ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值