MapReduce应用

一、搭建MapReduce编程模型

1.新建maven项目

2.配置pom.xml依赖文件

3.导入Hadoop配置文件

二、Hadoop集群与启动顺序

①$zkServer.sh start

#如果Zookeeper未启动,则在集群中所有主机上使用命令“zkServer.shstart”启动Zookeeper服务的脚本。

②$zkServer.sh status

#在集群中所有主机上使用此命令,查看该节点Zookeeper服务当前的状态,若集群中只有一个“leader”节点,其余的均为“follower”节点,则集群的工作状态正常。

③$start-all.sh

#在主节点使用命令,启动Hadoop集群。

④$yarn-daemon.sh start resourcemanager

#在所有备用主节点的主机,使用此命令,启动YARN主节点服务。

⑤$jps

#在主节点使用命令“jps”查看Java进程信息,若有名为“NameNode”、“ResourceManager”、“DFSZKFailoverController”的三个进程,则表示Hadoop集群的主节点启动成功。

#在所有备用主节点主机,使用命令“jps”查看Java进程信息,若有名为“NameNode”、“ResourceManager”、“DFSZKFailoverController”的三个进程,则表示Hadoop集群的备用主节点启动成功。

#在所有数据节点主机,使用命令“jps”查看Java进程信息,若有名为“DataNode”、“NodeManager”、“JournalNode”的三个进程,则表示Hadoop集群的数据节点启动成功。

三、Hadoop-Web验证

1.查看整个集群的HDFS状态:http://192.168.10.111:50070/

2.查看集群状态、日志信息等:http://192.168.10.111:8088/

3.在从节点上查看NodeManager信息:http://192.168.10.113:8088/

四、MapReduce的WordCount应用

1.新建maven项目

    2.配置pom.xml依赖文件

    3.导入Hadoop配置文件

4.编写代码(源码:[金山文档] GhyWordCount.java

①map函数的方法

②reduce函数的方法

③main函数的调用

·创建job类

·设置job的输入输出路径并提交集群

·定义输入输出路径

·创建Configuration类

5.提交MapReduce作业到集群运行

①上传jar包

②将测试文件上传到输出目录

   

③运行MapReduce作业

    

6.查看作业输出结果

五、书上代码练习

1.Partitioner操作

(1)编写代码(源码:[金山文档] GhyPartitionerApp.java

①map函数方法

②reduce函数的方法

③Partitioner函数的方法

④main函数的调用

·创建job类

·设置job的输入输出路径并提交集群

·定义输入输出路径

·创建Configuration类

(2)提交MapReduce作业到集群运行

①上传jar包

②将测试文件上传到输出目录

    

③运行MapReduce作业

    

6.查看作业输出结果

2.Join操作

(1)编写代码(源码:[金山文档] EmpJoinApp.java 

                     [金山文档] GhyEmplyee.java

                     [金山文档] MyMapper.java

                     [金山文档] MyReducer.java

①自定义mapper类开发

②自定义reducer类开发

③员工对象

④main函数的调用

·创建job类

·设置job的输入输出路径并提交集群

·定义输入输出路径

·创建Configuration类

(2)提交MapReduce作业到集群运行

①上传jar包

②将测试文件上传到输出目录

  

③运行MapReduce作业

    

6.查看作业输出结果

3.排序实现

(1)编写代码(源码:[金山文档] SortApp.java

①map函数方法

②reduce函数的方法

③Partitioner函数的方法

④main函数的调用

·创建job类

·设置job的输入输出路径并提交集群

·定义输入输出路径

·创建Configuration类

(2)提交MapReduce作业到集群运行

①上传jar包

②将测试文件上传到输出目录

③运行MapReduce作业

    

6.查看作业输出结果

1.SecondSort二次排序实现

(1)编写代码(源码:[金山文档] IntPair.java

                     [金山文档] SecondarySortApp.java

①compareTo方法

①map函数方法

②reduce函数的方法

③GroupingComparator分组函数方法实现

④main函数的调用

·创建job类

·设置job的输入输出路径并提交集群

·定义输入输出路径

·创建Configuration类

(2)提交MapReduce作业到集群运行

①上传jar包

②将测试文件上传到输出目录

   

③运行MapReduce作业

6.查看作业输出结果

<think>我们正在讨论HadoopMapReduce应用示例和教程。根据用户需求,我们需要提供MapReduce的示例、教程或最佳实践。结合引用内容,我们可以展示一个经典的WordCount示例(词频统计),因为这是MapReduce的"HelloWorld"程序。同时,我们也可以简要介绍MapReduce的基本结构和执行流程。步骤:1.介绍MapReduce的基本概念和组成部分(Mapper,Reducer,Driver)。2.给出一个WordCount的示例,包括代码(可以使用Java,因为引用中主要是Java,但用户提到Python,所以我们也可以给出Python示例)和运行步骤。3.说明如何运行这个示例(包括上传文件到HDFS,执行MapReduce作业等)。4.生成相关问题。注意:引用中提供了Java和Python两种方式的示例。我们可以先介绍Java版本(因为引用[3][4]有详细Java代码),再介绍Python版本(引用[2]提到了Python实现)。由于用户要求使用中文回答,并且需要生成相关问题,我们将按照以下结构组织:1.MapReduce简介2.WordCount示例(Java和Python)3.运行步骤4.相关问题注意:在回答中,行内数学表达式不需要,因为这里不涉及数学公式。但如果有公式,我们会用$...$。独立公式用$$...$$。不过当前内容主要是代码和命令行,所以不需要数学公式。开始回答:</think>### Hadoop MapReduce 应用示例与教程 #### 一、MapReduce 核心概念 MapReduceHadoop 的分布式计算框架,核心流程分为三个阶段: 1. **Mapper 阶段** 处理输入数据,生成中间键值对 $\langle key, value \rangle$。例如词频统计中: ```python # Python Mapper 示例 import sys for line in sys.stdin: words = line.strip().split() for word in words: print(f"{word}\t1") ``` 2. **Shuffle & Sort 阶段** 系统自动将相同 key 的 value 分组传输到 Reducer。 3. **Reducer 阶段** 聚合中间结果生成最终输出。词频统计的 Reducer: ```python # Python Reducer 示例 import sys current_word, count = None, 0 for line in sys.stdin: word, num = line.strip().split('\t') if word == current_word: count += int(num) else: if current_word: print(f"{current_word}\t{count}") current_word, count = word, int(num) ``` #### 二、完整应用示例:词频统计 (WordCount) ##### Java 版本(标准实现) ```java // Mapper public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { public void map(LongWritable key, Text value, Context context) { String[] words = value.toString().split(" "); for (String word : words) { context.write(new Text(word), new IntWritable(1)); } } } // Reducer public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) { int sum = 0; for (IntWritable val : values) sum += val.get(); context.write(key, new IntWritable(sum)); } } // Driver(引用自 [^4]) public class WordCountDriver { public static void main(String[] args) throws Exception { Job job = Job.getInstance(new Configuration()); job.setJarByClass(WordCountDriver.class); job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReducer.class); // ... 设置输入/输出路径 } } ``` ##### Python 实现(通过 Hadoop Streaming) 1. **准备数据** ```bash hdfs dfs -mkdir /wordcount_input hdfs dfs -put local_text.txt /wordcount_input # 引用 [^2] ``` 2. **执行 MapReduce 作业** ```bash hadoop jar hadoop-streaming.jar \ -input /wordcount_input \ -output /wordcount_output \ -mapper "python mapper.py" \ -reducer "python reducer.py" \ -file mapper.py \ -file reducer.py # 引用 [^2] ``` #### 三、最佳实践与优化 1. **性能优化** - 使用 `Combiner` 减少网络传输(类似本地 Reducer) - 合理设置分区(`Partitioner`)实现负载均衡 - 压缩中间数据(`mapreduce.map.output.compress=true`) 2. **错误处理** - 通过 `Counter` 监控任务状态 - 使用 `SkipBadRecords` 跳过异常数据 3. **资源调优** ```xml <!-- yarn-site.xml 配置示例 --> <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>8192</value> <!-- 调整容器内存 --> </property> ``` #### 四、应用场景 - **日志分析**:网站访问统计(如 PV/UV 计算) - **数据清洗**:大规模文本/CSV 处理 - **科学计算**:分布式矩阵运算(如 PageRank) - **ETL 流程**:数据仓库预处理 > 引用说明: > [^1] 展示了 Hadoop 命令行执行 WordCount 的标准流程; > [^2] 演示了 Python MapReduce 程序在 Hadoop 上的部署方法; > [^3][^4] 详细解释了 JavaMapReduce 的编程模型和代码结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值