Stable-Diffusion-WebUI-TensorRT 项目教程
1. 项目介绍
Stable-Diffusion-WebUI-TensorRT 是一个为 Stable Diffusion Web UI 提供的 TensorRT 扩展,旨在通过利用 NVIDIA RTX GPU 的 Tensor Cores 来最大化 Stable Diffusion 的性能。该扩展支持 Stable Diffusion 1.5、2.1、SDXL、SDXL Turbo 和 LCM 等多种模型。通过生成优化的 TensorRT 引擎,用户可以在 NVIDIA RTX GPU 上获得最佳的图像生成性能。
2. 项目快速启动
安装步骤
-
启动 Web UI: 首先,启动 Automatic1111 的 Web UI。
-
安装扩展: 在 Web UI 中,选择
Extensions
标签,然后点击Install from URL
。将以下链接粘贴到URL for extension's git repository
中,然后点击Install
。https://github.com/andrewtvuong/Stable-Diffusion-WebUI-TensorRT.git
-
生成默认引擎: 安装完成后,点击
Generate Default Engines
按钮。此步骤可能需要 2-10 分钟,具体取决于您的 GPU。python install.py
-
配置 Web UI: 在
Settings
→User Interface
→Quick Settings List
中,添加sd_unet
,然后应用这些设置并重新加载 UI。 -
选择引擎: 在主 UI 中,从
sd_unet
下拉菜单中选择Automatic
,然后开始生成图像。
代码示例
# 启动 Web UI
./webui.bat
# 安装扩展
cd extensions
git clone https://github.com/andrewtvuong/Stable-Diffusion-WebUI-TensorRT.git
# 生成默认引擎
python install.py
3. 应用案例和最佳实践
应用案例
- 高性能图像生成: 使用 TensorRT 扩展,用户可以在 NVIDIA RTX GPU 上以更快的速度生成高质量的图像。
- 实时图像处理: 适用于需要实时图像处理的应用场景,如视频编辑、实时渲染等。
最佳实践
- 选择合适的 GPU: 对于 SDXL 和 SDXL Turbo,建议使用至少 12 GB VRAM 的 GPU 以获得最佳性能。
- 优化引擎生成: 根据需求生成多个优化引擎,以支持不同的分辨率和批量大小。
- 使用 LoRA: 如果需要使用 LoRA/LyCORIS 检查点,首先需要将其转换为 TensorRT 格式。
4. 典型生态项目
- Automatic1111/stable-diffusion-webui: 这是 Stable Diffusion Web UI 的主项目,提供了用户友好的界面和丰富的功能。
- NVIDIA/TensorRT: NVIDIA 的 TensorRT 库,提供了高性能的深度学习推理优化。
- CompVis/stable-diffusion: Stable Diffusion 模型的原始实现,提供了多种版本的模型。
通过这些项目的结合使用,用户可以在 Stable Diffusion Web UI 上获得最佳的图像生成体验。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考