MSR-3DCNN 项目使用教程

MSR-3DCNN 项目使用教程

MSR-3DCNN This is the code of the paper Multiple Spectral Resolution 3D Convolutional Neural Network for Hyperspectral Image Classification. And the paper has been accpeted by remote sensing. MSR-3DCNN 项目地址: https://gitcode.com/gh_mirrors/ms/MSR-3DCNN

1. 项目的目录结构及介绍

MSR-3DCNN/
├── MSR-3DCNN.ipynb
├── README.md
├── license
└── datasets/
    └── hyperspectral_data/
  • MSR-3DCNN.ipynb: 这是项目的主要代码文件,包含了实现多光谱分辨率3D卷积神经网络(MSR-3DCNN)的Jupyter Notebook。
  • README.md: 项目的介绍文件,包含了项目的概述、使用方法和引用信息。
  • license: 项目的许可证文件,说明项目的开源许可证类型。
  • datasets/: 数据集目录,用于存放项目所需的超光谱图像数据集。

2. 项目的启动文件介绍

项目的启动文件是 MSR-3DCNN.ipynb。这是一个Jupyter Notebook文件,包含了项目的所有代码实现。用户可以通过打开这个文件来运行和调试项目代码。

启动步骤

  1. 安装Jupyter Notebook(如果尚未安装)。
  2. 克隆项目仓库到本地:
    git clone https://github.com/shouhengx/MSR-3DCNN.git
    
  3. 进入项目目录:
    cd MSR-3DCNN
    
  4. 启动Jupyter Notebook:
    jupyter notebook
    
  5. 在Jupyter Notebook界面中打开 MSR-3DCNN.ipynb 文件,按照Notebook中的步骤运行代码。

3. 项目的配置文件介绍

项目中没有明确的配置文件,所有的配置和参数设置都在 MSR-3DCNN.ipynb 文件中进行。用户可以根据需要在Notebook中修改参数,例如数据集路径、模型超参数等。

主要配置参数

  • 数据集路径: 在Notebook中指定数据集的路径,确保数据集文件存在于指定路径下。
  • 模型参数: 包括卷积核大小、层数、学习率等,这些参数可以在Notebook中进行调整。

通过以上步骤,用户可以顺利启动和配置MSR-3DCNN项目,并根据需要进行进一步的开发和调试。

MSR-3DCNN This is the code of the paper Multiple Spectral Resolution 3D Convolutional Neural Network for Hyperspectral Image Classification. And the paper has been accpeted by remote sensing. MSR-3DCNN 项目地址: https://gitcode.com/gh_mirrors/ms/MSR-3DCNN

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柳旖岭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值