Chainer_Realtime_Multi-Person_Pose_Estimation 使用教程
1. 项目目录结构及介绍
本项目是基于Chainer的开源实时多人姿态估计项目,其目录结构如下:
data
: 存放项目所需的数据集和示例图片。models
: 存放转换后的Chainer模型文件。entity.py
: 包含数据集配置和辅助类。pose_detector.py
: 包含姿态检测的核心逻辑。face_detector.py
: 包含人脸检测的核心逻辑。hand_detector.py
: 包含手部检测的核心逻辑。demo.py
: 包含示例演示的核心逻辑。camera_pose_demo.py
: 包含使用摄像头进行姿态估计的实时演示逻辑。camera_face_demo.py
: 包含使用摄像头进行人脸估计的实时演示逻辑。gen_ignore_mask.py
: 包含生成忽略掩膜的脚本。plot_train_log.py
: 包含绘制训练日志的脚本。train_coco_pose_estimation.py
: 包含训练模型的脚本。README.md
: 项目说明文件。LICENSE
: 项目许可证文件。
2. 项目的启动文件介绍
启动文件主要是用于演示和测试项目的功能,以下是几个主要的启动文件:
demo.py
: 该文件用于加载模型并运行一个图像上的姿态、人脸和手部的检测示例。camera_pose_demo.py
: 该文件用于启动一个实时姿态估计的摄像头演示,可以通过按下'q'键退出。camera_face_demo.py
: 该文件用于启动一个实时人脸估计的摄像头演示,可以通过按下'q'键退出。
3. 项目的配置文件介绍
本项目中的配置主要是通过代码中的参数设置来完成的,没有专门的配置文件。以下是一些主要的配置参数:
- 在
entity.py
中,可以配置数据集的路径和其他相关参数。 - 在
train_coco_pose_estimation.py
中,可以配置训练的相关参数,如迭代次数、学习率等。 - 在其他检测脚本(如
pose_detector.py
)中,可以配置模型文件路径、图像输入路径等。
在运行任何脚本之前,确保已经正确设置了所有必要的参数,以匹配你的项目环境和需求。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考