MMDeploy项目一键式脚本安装指南
前言
在深度学习模型部署领域,MMDeploy作为一个功能强大的模型部署工具包,为开发者提供了多种后端推理引擎的支持。本文将详细介绍如何使用官方提供的一键式安装脚本快速搭建MMDeploy开发环境,帮助开发者跳过繁琐的环境配置步骤,直接进入模型部署的核心工作。
准备工作
在开始安装前,请确保您的系统满足以下基本要求:
- Python环境:已安装Python3和pip包管理工具(可通过conda或pyenv等工具管理)
- CUDA工具链:若需要使用GPU推理后端,需安装nvcc编译器
- PyTorch框架:虽然不是必须项,但建议预先安装(也可在后续步骤中安装)
安装流程详解
基本安装步骤
以安装NCNN后端为例,执行以下命令即可完成安装:
cd /path/to/mmdeploy
python3 tools/scripts/build_ubuntu_x64_ncnn.py
安装过程中,脚本会自动处理以下事项:
- 系统环境检测:检查系统版本、make任务数、用户权限等
- 依赖工具检查:自动查找并安装g++-7、cmake、wget等必要工具
- 依赖库编译:自动编译pyncnn、protobuf等必要依赖项
环境隔离设计
脚本采用以下设计保证系统环境的整洁:
- 所有编译的依赖项都存放在mmdeploy同级目录的
mmdeploy-dep
文件夹中 - 不会修改系统环境变量(PATH、LD_LIBRARY_PATH等)
- 安装完成后会输出需要手动设置的环境变量提示
验证安装结果
安装完成后,建议运行以下命令验证环境:
python3 tools/check_env.py
成功安装后,您将看到类似如下的输出,显示各后端的版本号及算子可用状态:
2022-09-13 14:49:13,767 - mmdeploy - INFO - **********Backend information**********
2022-09-13 14:49:14,116 - mmdeploy - INFO - onnxruntime: 1.8.0 ops_is_avaliable : True
2022-09-13 14:49:14,131 - mmdeploy - INFO - tensorrt: 8.4.1.5 ops_is_avaliable : True
2022-09-13 14:49:14,139 - mmdeploy - INFO - ncnn: 1.0.20220901 ops_is_avaliable : True
2022-09-13 14:49:14,150 - mmdeploy - INFO - pplnn_is_avaliable: True
关键指标ops_is_avaliable: True
表示该后端的算子支持正常。
多后端支持方案
MMDeploy支持同时安装多个推理后端,只需分别执行对应的安装脚本即可。以下是已验证的脚本列表:
| 脚本名称 | 支持的操作系统版本 | |---------|------------------| | build_ubuntu_x64_ncnn.py | Ubuntu 18.04/20.04 | | build_ubuntu_x64_ort.py | Ubuntu 18.04/20.04 | | build_ubuntu_x64_pplnn.py | Ubuntu 18.04/20.04 | | build_ubuntu_x64_torchscript.py | Ubuntu 18.04/20.04 | | build_ubuntu_x64_tvm.py | Ubuntu 18.04/20.04 | | build_jetson_orin_python38.sh | JetPack5.0 L4T 34.1 |
常见问题处理
- 权限问题:安装过程中可能需要输入sudo密码,请确保您有足够的权限
- 环境变量设置:安装完成后请仔细阅读脚本输出的环境变量设置提示
- 依赖冲突:如果遇到依赖冲突问题,建议使用虚拟环境隔离
结语
通过使用MMDeploy提供的一键式安装脚本,开发者可以快速搭建起完整的模型部署环境,将更多精力投入到模型优化和业务逻辑开发中。建议初次接触MMDeploy的用户优先采用这种方式进行环境配置,待熟悉后再考虑手动安装方式。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考