开源项目安装与配置指南:NPHard
1. 项目基础介绍
NPHard 是一个使用图卷积网络(GCN)和引导树搜索来解决最大独立集问题的 TensorFlow 实现。该问题是组合优化中的一个经典难题,该项目提供了一个基于机器学习的解决方案。项目的主要编程语言是 Python 和 C++。
2. 关键技术和框架
- 图卷积网络(GCN):这是一种深度学习模型,用于处理图结构数据。GCN 通过学习节点的邻域信息来提取图的特征,适用于节点分类、链接预测等任务。
- 引导树搜索:这是一种启发式搜索算法,用于在图的组合空间中找到最优解。
- TensorFlow:该项目使用 TensorFlow 框架进行模型的搭建和训练,TensorFlow 是一个由 Google 开发并开源的强大机器学习库。
3. 安装和配置准备工作
在开始安装前,请确保您的系统满足以下要求:
- 操作系统:Ubuntu 16.04 LTS 或其他兼容的Linux版本
- CPU:Intel i7 或更高性能处理器
- GPU:Nvidia Titan X (Pascal) 或其他兼容CUDA的GPU(推荐)
- CUDA:版本 8.0 或更高
- CuDNN:版本 6.0 或更高
- Python:版本 3.x
- 需要的Python库:TensorFlow (>=1.3), Scipy, Numpy
安装步骤
-
克隆项目仓库到本地:
git clone https://github.com/isl-org/NPHard.git cd NPHard
-
安装所需的Python库:
pip install tensorflow>=1.3 scipy numpy
-
为了使用图缩减和局部搜索功能,需要安装 KaMIS:
- 从 KaMIS 的项目页或 GitHub 页面克隆 KaMIS 仓库。
- 将本项目仓库中
kernel
目录下的文件复制到 KaMIS 目录,并运行make
命令来生成共享对象文件libreduce.so
。 - 将生成的
libreduce.so
文件复制回本项目的kernel
目录。 - 在
demo_parallel.py
文件中取消注释相关行,并注释掉相应的行来启用图缩减和局部搜索功能。
-
训练模型:
- 训练数据需要从其他来源下载或合成。可以从 SATLIB 或 RB Model 等网站获取数据。
- 数据文件应该包含邻接矩阵和至少一个真实标签,并以 MATLAB 文件格式保存,其中包含
adj
和indset_label
符号。 - 设置数据路径,并运行
train.py
开始训练:
python train.py
请注意,以上步骤仅为基本安装和配置指南,具体细节可能根据您的系统环境和项目需求有所不同。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考