开源项目安装与配置指南:NPHard

开源项目安装与配置指南:NPHard

NPHard Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search NPHard 项目地址: https://gitcode.com/gh_mirrors/nph/NPHard

1. 项目基础介绍

NPHard 是一个使用图卷积网络(GCN)和引导树搜索来解决最大独立集问题的 TensorFlow 实现。该问题是组合优化中的一个经典难题,该项目提供了一个基于机器学习的解决方案。项目的主要编程语言是 Python 和 C++。

2. 关键技术和框架

  • 图卷积网络(GCN):这是一种深度学习模型,用于处理图结构数据。GCN 通过学习节点的邻域信息来提取图的特征,适用于节点分类、链接预测等任务。
  • 引导树搜索:这是一种启发式搜索算法,用于在图的组合空间中找到最优解。
  • TensorFlow:该项目使用 TensorFlow 框架进行模型的搭建和训练,TensorFlow 是一个由 Google 开发并开源的强大机器学习库。

3. 安装和配置准备工作

在开始安装前,请确保您的系统满足以下要求:

  • 操作系统:Ubuntu 16.04 LTS 或其他兼容的Linux版本
  • CPU:Intel i7 或更高性能处理器
  • GPU:Nvidia Titan X (Pascal) 或其他兼容CUDA的GPU(推荐)
  • CUDA:版本 8.0 或更高
  • CuDNN:版本 6.0 或更高
  • Python:版本 3.x
  • 需要的Python库:TensorFlow (>=1.3), Scipy, Numpy

安装步骤

  1. 克隆项目仓库到本地:

    git clone https://github.com/isl-org/NPHard.git
    cd NPHard
    
  2. 安装所需的Python库:

    pip install tensorflow>=1.3 scipy numpy
    
  3. 为了使用图缩减和局部搜索功能,需要安装 KaMIS:

    • 从 KaMIS 的项目页或 GitHub 页面克隆 KaMIS 仓库。
    • 将本项目仓库中 kernel 目录下的文件复制到 KaMIS 目录,并运行 make 命令来生成共享对象文件 libreduce.so
    • 将生成的 libreduce.so 文件复制回本项目的 kernel 目录。
    • demo_parallel.py 文件中取消注释相关行,并注释掉相应的行来启用图缩减和局部搜索功能。
  4. 训练模型:

    • 训练数据需要从其他来源下载或合成。可以从 SATLIB 或 RB Model 等网站获取数据。
    • 数据文件应该包含邻接矩阵和至少一个真实标签,并以 MATLAB 文件格式保存,其中包含 adjindset_label 符号。
    • 设置数据路径,并运行 train.py 开始训练:
    python train.py
    

请注意,以上步骤仅为基本安装和配置指南,具体细节可能根据您的系统环境和项目需求有所不同。

NPHard Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search NPHard 项目地址: https://gitcode.com/gh_mirrors/nph/NPHard

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔岱怀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值