算法笔记:数组累加和三连问题深度解析

算法笔记:数组累加和三连问题深度解析

本文将从技术专家视角,深入剖析数组累加和问题的三种典型场景及其解决方案,帮助读者掌握这类算法问题的核心思路和实现技巧。

一、系统设计基础:UUID生成方案

在深入数组问题前,我们先探讨一个相关的系统设计问题:如何设计一个高并发的UUID生成系统。这个案例展示了垂直扩展思想在实际工程中的应用。

核心思路

  1. 中央服务器负责分配ID范围段(start和range)
  2. 各国/地区服务器向中央服务器申请ID段
  3. 当本地ID段耗尽时可再次申请
  4. 中央服务器维护已分配位置,确保不重复

这种设计避免了传统水平扩展方案(如hashcode、random等)可能产生的碰撞问题,特别适合需要严格唯一性的场景。

二、数组累加和问题三连

2.1 正数数组的累加和问题

问题描述:给定一个正数数组和正整数sum,求累加和等于sum的最长子数组长度。

示例: 数组:[3,2,1,1,1,6,1,1,1,1,1,1] sum=6 最长子数组:[1,1,1,1,1,1],长度6

解法思路: 利用正数数组的单调性特点,采用滑动窗口算法:

  1. 初始化窗口左右边界L=R=0,窗口和windowSum=arr[0]
  2. 比较windowSum与sum:
    • 小于sum:右边界R右移,扩大窗口
    • 大于sum:左边界L右移,缩小窗口
    • 等于sum:记录窗口大小,左边界右移

代码实现

public static int getMaxLength(int[] arr, int K) {
    if (arr == null || arr.length == 0 || K <= 0) return 0;
    
    int left = 0, right = 0;
    int sum = arr[0];
    int len = 0;
    
    while (right < arr.length) {
        if (sum == K) {
            len = Math.max(len, right - left + 1);
            sum -= arr[left++];
        } else if (sum < K) {
            right++;
            if (right == arr.length) break;
            sum += arr[right];
        } else {
            sum -= arr[left++];
        }
    }
    return len;
}

2.2 任意数组的累加和问题

问题描述:数组元素可正可负可零,求累加和等于sum的最长子数组长度。

解法思路: 利用前缀和+哈希表:

  1. 维护一个哈希表记录前缀和及其最早出现位置
  2. 计算当前前缀和allSum
  3. 查找哈希表中是否存在allSum-sum
  4. 若存在,则对应位置j到当前位置i的子数组和为sum

关键点

  • 预置map.put(0, -1)处理从数组开头开始的子数组
  • 只记录前缀和第一次出现的位置以保证最长子数组

代码实现

public static int maxLength(int[] arr, int k) {
    if (arr == null || arr.length == 0) return 0;
    
    HashMap<Integer, Integer> map = new HashMap<>();
    map.put(0, -1); // 关键初始化
    int len = 0, sum = 0;
    
    for (int i = 0; i < arr.length; i++) {
        sum += arr[i];
        if (map.containsKey(sum - k)) {
            len = Math.max(len, i - map.get(sum - k));
        }
        if (!map.containsKey(sum)) {
            map.put(sum, i);
        }
    }
    return len;
}

变体问题:求1和2数量相等的子数组 解法:将1保持为1,2变为-1,其他为0,转化为求和为0的子数组问题

2.3 累加和小于等于k的最长子数组

问题描述:数组元素可正可负可零,求累加和≤k的最长子数组长度。

解法思路

  1. 预处理两个辅助数组:
    • minSums[i]:从i开始的最小累加和
    • minSumEnds[i]:对应最小累加和的结束位置
  2. 使用滑动窗口思想,利用预处理信息快速判断窗口扩展可能性

代码实现

public static int maxLengthAwesome(int[] arr, int k) {
    if (arr == null || arr.length == 0) return 0;
    
    // 预处理minSums和minSumEnds
    int[] minSums = new int[arr.length];
    int[] minSumEnds = new int[arr.length];
    minSums[arr.length-1] = arr[arr.length-1];
    minSumEnds[arr.length-1] = arr.length-1;
    
    for (int i = arr.length-2; i >= 0; i--) {
        if (minSums[i+1] < 0) {
            minSums[i] = arr[i] + minSums[i+1];
            minSumEnds[i] = minSumEnds[i+1];
        } else {
            minSums[i] = arr[i];
            minSumEnds[i] = i;
        }
    }
    
    // 滑动窗口求解
    int end = 0, sum = 0, res = 0;
    for (int i = 0; i < arr.length; i++) {
        while (end < arr.length && sum + minSums[end] <= k) {
            sum += minSums[end];
            end = minSumEnds[end] + 1;
        }
        res = Math.max(res, end - i);
        if (end > i) {
            sum -= arr[i];
        } else {
            end = i + 1;
        }
    }
    return res;
}

三、总结与思考

  1. 正数数组:利用单调性,滑动窗口是最高效的解法
  2. 任意数组:前缀和+哈希表是通用解法,时间复杂度O(n)
  3. ≤k问题:需要巧妙的预处理和滑动窗口结合

这些算法问题展示了如何根据不同数据特性选择最优解法,也体现了预处理思想在优化算法中的重要性。理解这些问题有助于培养对数组类问题的敏感度和解题直觉。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔岱怀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值