FlowNet2 项目使用教程

FlowNet2 项目使用教程

flownet2 FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks flownet2 项目地址: https://gitcode.com/gh_mirrors/fl/flownet2

1. 项目的目录结构及介绍

FlowNet2 项目是一个用于光流估计的深度学习框架。以下是项目的目录结构及其简要介绍:

  • data: 存储训练和测试数据。
  • docker: 容器配置文件,用于在 Docker 环境中运行项目。
  • docs: 文档文件夹,包含了项目的相关文档。
  • examples: 示例文件夹,包含了使用项目的示例代码。
  • include: 包含了一些必要的头文件。
  • matlab: 提供了 MATLAB 接口的代码。
  • models: 包含了预训练的模型文件和下载模型的脚本。
  • python: 包含了 Python 接口的代码。
  • scripts: 包含了项目运行和配置的脚本。
  • src: 源代码文件夹,包含了 FlowNet2 的核心实现。
  • tools: 提供了一些工具脚本。
  • .gitignore: 定义了 Git 忽略的文件列表。
  • CMakeLists.txt: CMake 构建脚本,用于编译项目。
  • CONTRIBUTING.md: 贡献指南,说明如何为项目贡献代码。
  • CONTRIBUTORS.md: 项目贡献者名单。
  • INSTALL.md: 安装指南,说明如何安装项目。
  • LICENSE: 项目许可证文件。
  • Makefile: Makefile 文件,用于编译项目。
  • Makefile.config.example: Makefile 配置文件示例。
  • README-caffe.md: Caffe 相关的 README 文件。
  • README.md: 项目的主 README 文件。
  • set-env.sh: 环境变量设置脚本。

2. 项目的启动文件介绍

项目的启动主要是通过 set-env.sh 脚本进行的,该脚本设置了所有必要的环境变量,确保 Python 和系统路径中不存在其他 Caffe 版本,并配置了项目的路径。

$ source set-env.sh

在环境配置完成后,可以运行 run-flownet.py 脚本来在单个图像对上运行 FlowNet:

$ run-flownet.py /path/to/$net/$net_weights.caffemodel[.h5] \
/path/to/$net/$net_deploy.prototxt.template \
x.png y.png z.flo

其中,x.pngy.png 是输入图像,z.flo 是输出文件。

3. 项目的配置文件介绍

项目的配置主要通过 Makefile.config.example 文件进行。该文件是一个 Makefile 的配置示例,需要根据实际环境进行修改,生成 Makefile 文件。

以下是一些基本的配置选项:

  • CPU_ONLY: 如果不使用 GPU,设置为 1
  • CUDA: 如果使用 GPU,需要设置为 GPU 的版本号,如 8.0
  • CUDNN: 如果使用 cuDNN,需要设置为 cuDNN 的版本号。
  • OPENCV: 设置 OpenCV 的路径。

在配置完成后,可以使用以下命令编译项目:

$ make -j 5 all tools pycaffe

此外,models 文件夹中的 download-models.sh 脚本可以用来下载预训练的模型。

$ cd models
$ ./download-models.sh

以上就是 FlowNet2 项目的使用教程,按照以上步骤可以顺利搭建和运行该项目。

flownet2 FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks flownet2 项目地址: https://gitcode.com/gh_mirrors/fl/flownet2

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍妲葵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值