机器学习项目mlcourse.ai中的关联规则学习:Python与R实战指南
关联规则学习基础:从啤酒与尿布说起
关联规则学习(Association Rules Learning, ARL)是数据挖掘领域中一种简单但实用的方法,用于发现数据集中的关联关系。这种方法最早由Piatesky-Shapiro在1991年提出,随后Agrawal等人在1993-1994年进一步发展完善。
经典案例:啤酒与尿布的关联
最著名的关联规则案例来自1992年Teradata咨询团队对Osco Drug超市120万笔交易的分析。他们发现一个反直觉的强关联规则:"在下午5-7点,啤酒和尿布经常被一起购买"。虽然最初管理层不相信这个发现,但后来发现这反映了年轻父亲的行为模式——下班后被妻子派去买尿布时,顺便给自己买啤酒。
关联规则的核心概念
数据表示形式
关联规则分析的数据通常表示为:
- 事务(Transaction):如购物小票
- 项集(Itemset):事务中的商品集合
- 项(Item):单个商品
数据可以表示为稀疏矩阵,其中1表示购买,0表示未购买。例如:
| 事务ID | 啤酒 | 尿布 | 可乐 | |--------|------|------|------| | 1 | 1 | 1 | 1 | | 2 | 0 | 1 | 0 | | 3 | 1 | 0 | 1 |
关键指标
支持度(Support)
支持度表示项集在所有事务中出现的频率:
$$supp(X) = \frac{\text{包含X的事务数}}{\text{总事务数}}$$
例如,啤酒和尿布同时出现的支持度为2/5=40%。
置信度(Confidence)
置信度表示规则的可信程度:
$$conf(X→Y) = \frac{supp(X \cup Y)}{supp(X)}$$
这类似于条件概率P(Y|X)。啤酒→尿布的置信度为(2/5)/(3/5)=67%。
提升度(Lift)
提升度衡量项之间的依赖程度:
$$lift(X→Y) = \frac{supp(X \cup Y)}{supp(X) \times supp(Y)}$$
提升度>1表示正相关。啤酒和尿布的提升度为1.11,表示这个组合比随机购买强11%。
确信度(Conviction)
确信度衡量规则的错误频率:
$$conv(X→Y) = \frac{1-supp(Y)}{1-conf(X→Y)}$$
值越大表示规则越强。啤酒和尿布的确信度为1.81。
关联规则算法
暴力搜索算法
暴力搜索是最简单但效率最低的方法:
- 生成所有可能的项集组合
- 计算每个组合的支持度
- 筛选满足最小支持度的项集
复杂度为O(2^|I|),仅适用于小规模数据。例如34个商品就需要128GB内存。
Apriori算法
Apriori算法利用"频繁项集的子集也必须是频繁的"这一先验性质,通过逐层搜索来高效发现频繁项集。
算法步骤:
- 扫描数据库,找出所有频繁1-项集
- 使用频繁k-项集生成候选(k+1)-项集
- 剪枝:删除包含非频繁k-子集的候选
- 重复直到不能生成更大的频繁项集
Apriori通过减少候选集数量显著提高了效率,是关联规则挖掘的经典算法。
实际应用建议
- 数据预处理:将交易数据转换为适合分析的格式(如稀疏矩阵)
- 参数调优:合理设置最小支持度和置信度阈值
- 结果解释:不仅关注统计指标,还要结合实际业务理解规则含义
- 算法选择:根据数据规模选择合适算法,大数据可考虑FP-Growth等更高效方法
关联规则学习虽然概念简单,但在零售、推荐系统、医疗诊断等领域都有广泛应用。理解其核心原理并掌握实现方法,可以帮助我们从数据中发现有价值的关联模式。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考