机器学习项目mlcourse.ai中的关联规则学习:Python与R实战指南

机器学习项目mlcourse.ai中的关联规则学习:Python与R实战指南

关联规则学习基础:从啤酒与尿布说起

关联规则学习(Association Rules Learning, ARL)是数据挖掘领域中一种简单但实用的方法,用于发现数据集中的关联关系。这种方法最早由Piatesky-Shapiro在1991年提出,随后Agrawal等人在1993-1994年进一步发展完善。

经典案例:啤酒与尿布的关联

最著名的关联规则案例来自1992年Teradata咨询团队对Osco Drug超市120万笔交易的分析。他们发现一个反直觉的强关联规则:"在下午5-7点,啤酒和尿布经常被一起购买"。虽然最初管理层不相信这个发现,但后来发现这反映了年轻父亲的行为模式——下班后被妻子派去买尿布时,顺便给自己买啤酒。

关联规则的核心概念

数据表示形式

关联规则分析的数据通常表示为:

  • 事务(Transaction):如购物小票
  • 项集(Itemset):事务中的商品集合
  • 项(Item):单个商品

数据可以表示为稀疏矩阵,其中1表示购买,0表示未购买。例如:

| 事务ID | 啤酒 | 尿布 | 可乐 | |--------|------|------|------| | 1 | 1 | 1 | 1 | | 2 | 0 | 1 | 0 | | 3 | 1 | 0 | 1 |

关键指标

支持度(Support)

支持度表示项集在所有事务中出现的频率:

$$supp(X) = \frac{\text{包含X的事务数}}{\text{总事务数}}$$

例如,啤酒和尿布同时出现的支持度为2/5=40%。

置信度(Confidence)

置信度表示规则的可信程度:

$$conf(X→Y) = \frac{supp(X \cup Y)}{supp(X)}$$

这类似于条件概率P(Y|X)。啤酒→尿布的置信度为(2/5)/(3/5)=67%。

提升度(Lift)

提升度衡量项之间的依赖程度:

$$lift(X→Y) = \frac{supp(X \cup Y)}{supp(X) \times supp(Y)}$$

提升度>1表示正相关。啤酒和尿布的提升度为1.11,表示这个组合比随机购买强11%。

确信度(Conviction)

确信度衡量规则的错误频率:

$$conv(X→Y) = \frac{1-supp(Y)}{1-conf(X→Y)}$$

值越大表示规则越强。啤酒和尿布的确信度为1.81。

关联规则算法

暴力搜索算法

暴力搜索是最简单但效率最低的方法:

  1. 生成所有可能的项集组合
  2. 计算每个组合的支持度
  3. 筛选满足最小支持度的项集

复杂度为O(2^|I|),仅适用于小规模数据。例如34个商品就需要128GB内存。

Apriori算法

Apriori算法利用"频繁项集的子集也必须是频繁的"这一先验性质,通过逐层搜索来高效发现频繁项集。

算法步骤

  1. 扫描数据库,找出所有频繁1-项集
  2. 使用频繁k-项集生成候选(k+1)-项集
  3. 剪枝:删除包含非频繁k-子集的候选
  4. 重复直到不能生成更大的频繁项集

Apriori通过减少候选集数量显著提高了效率,是关联规则挖掘的经典算法。

实际应用建议

  1. 数据预处理:将交易数据转换为适合分析的格式(如稀疏矩阵)
  2. 参数调优:合理设置最小支持度和置信度阈值
  3. 结果解释:不仅关注统计指标,还要结合实际业务理解规则含义
  4. 算法选择:根据数据规模选择合适算法,大数据可考虑FP-Growth等更高效方法

关联规则学习虽然概念简单,但在零售、推荐系统、医疗诊断等领域都有广泛应用。理解其核心原理并掌握实现方法,可以帮助我们从数据中发现有价值的关联模式。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍妲葵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值