PictureChooseLib 使用教程

PictureChooseLib 使用教程

1. 项目的目录结构及介绍

PictureChooseLib/
├── gradle/
│   └── wrapper/
├── library/
├── sample/
├── .gitignore
├── LICENSE
├── PictureChooseLib.iml
├── PictureLib.iml
├── README.md
├── _config.yml
├── build.gradle
├── gradle-mvn-push.gradle
├── gradle.properties
├── gradlew
├── gradlew.bat
└── settings.gradle
  • gradle/:包含 Gradle 包装器的文件。
  • library/:库的主要代码文件夹。
  • sample/:示例应用程序的代码文件夹。
  • .gitignore:Git 忽略文件。
  • LICENSE:项目许可证文件。
  • PictureChooseLib.imlPictureLib.iml:IntelliJ IDEA 的项目文件。
  • README.md:项目说明文档。
  • _config.yml:配置文件。
  • build.gradle:Gradle 构建脚本。
  • gradle-mvn-push.gradle:用于发布到 Maven 的 Gradle 脚本。
  • gradle.properties:Gradle 属性文件。
  • gradlewgradlew.bat:Gradle 包装器脚本。
  • settings.gradle:Gradle 设置文件。

2. 项目的启动文件介绍

项目的启动文件位于 sample/ 目录下。通常,Android 项目的启动文件是 MainActivity.javaMainActivity.kt。这个文件负责初始化应用程序并加载主界面。

3. 项目的配置文件介绍

  • build.gradle:这是主要的 Gradle 构建脚本,包含了项目的依赖、插件和其他构建配置。
  • settings.gradle:这个文件包含了项目的模块配置,指定了哪些模块应该被包含在构建中。
  • gradle.properties:这个文件包含了 Gradle 构建的属性配置,如 JVM 参数、版本号等。

以上是 PictureChooseLib 项目的基本结构和配置文件的介绍。希望这些信息能帮助你更好地理解和使用这个开源项目。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

社区物资交易互助系统-社区物资交易互助系统源码-基于Web的社区物资交易互助系统设计与实现 1、博主介绍:大厂码农,java领域创作者,专注于大学生项目实战开发,文章底部有博主联系方式,更多优质系统、项目定制请私信。 2、最新计算机软件毕业设计选题大全: https://blog.csdn.net/weixin_45630258/article/details/135901374 3、系统功能:本项目的功能演示效果,请点击博主主页,搜索关键词查看! 【代码介绍】 1、适用人群:计算机相关专业(如计算机、网络、信息安全、大数据、人工智能、通信、物联网、电信等)在校学生、老师下载使用。 2、代码用途:项目具有较高的学习借鉴价值,小白入门学习,也可作为毕设项目、课程设计、大作业的学习。 3、代码能力:如果基础还行,可在此项目代码进行修改,实现不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我! 【技术与部署】 (1)技术栈 后端:Java+SpringBoot/SSM+MyBatisPlus 前端:Vue+Ajax 数据库:MySQL 工具:Maven+IDEA+Navicat/SQLyog (2)技术版本 JDK:1.8+ Maven:≥3.0 MySQL:5.7/8.0 Node:14.x SpringBoot:2.x系列 Vue:2.x系列 【项目亮点/创新点推荐】 高分系统推荐:https://blog.csdn.net/weixin_45630258/article/details/135901374 亮点/创意的技术推荐:可视化图表统计、高德地图定位、人脸识别、支付宝沙箱、AI对话、在线直播、消息通知、MD5加密、登录验证码、邮箱验证、多文件上传、日历展示、操作日志、图像识别…… 【下载】 请放心下载使用!有问题请及时沟通交流。
基于Swin Transformer和SE模块的先进图像分类系统 项目概述 本项目实现了一个高效的图像分类系统,结合了Swin Transformer的强大特征提取能力和SE(Squeeze-and-Excitation)模块的通道注意力机制。系统提供了完整的训练流程、评估指标和可视化功能,适用于各种图像分类任务。 技术亮点 先进的模型架构: 基于Swin Transformer构建主干网络,利用其层次化窗口注意力机制捕获多尺度特征 创新性地集成SE模块,增强重要通道的特征表示 采用预训练权重初始化,加速模型收敛 全面的数据增强: 随机裁剪、水平翻转、颜色扰动等多种数据增强策略 标准化处理,适应预训练模型的输入要求 灵活的数据加载接口,支持自定义数据集 完善的训练框架: 支持多GPU训练和混合精度计算 丰富的评估指标:准确率、精确率、召回率、F1分数、特异度等 自动保存最佳模型和训练曲线 应用场景 本系统可广泛应用于: 医学影像分析:病理切片分类、X光图像诊断 工业质检:产品缺陷检测、质量分级 遥感图像处理:地物分类、目标识别 智能零售:商品识别、货架监控 农业应用:病虫害识别、作物分类 性能优势 更高的准确率:SE模块的引入使模型在多个基准数据集上表现优于标准Swin Transformer 更快的收敛速度:预训练权重和优化后的网络结构减少训练时间 更强的泛化能力:综合数据增强策略提升模型鲁棒性 更全面的评估:提供6种专业评估指标,全方位衡量模型性能
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芮伦硕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值