MOC-Detector 项目使用教程
1. 项目的目录结构及介绍
MOC-Detector 项目的目录结构如下:
MOC-Detector/
├── data/
│ └── ...
├── experiment/
│ └── ...
├── image/
│ └── ...
├── readme/
│ └── ...
├── scripts/
│ └── ...
├── src/
│ └── ...
├── .gitignore
├── LICENSE
├── NOTICE
├── README.md
├── pip-list.txt
目录介绍:
- data/: 存放数据集相关文件。
- experiment/: 存放实验配置和结果文件。
- image/: 存放项目相关的图像文件。
- readme/: 存放README文件的相关资源。
- scripts/: 存放项目使用的脚本文件。
- src/: 存放项目的源代码。
- .gitignore: Git忽略文件配置。
- LICENSE: 项目许可证文件。
- NOTICE: 项目通知文件。
- README.md: 项目介绍和使用说明。
- pip-list.txt: 项目依赖的Python包列表。
2. 项目的启动文件介绍
MOC-Detector 项目的启动文件主要位于 src/
目录下。以下是主要的启动文件及其功能介绍:
- main.py: 项目的入口文件,负责初始化配置、加载数据、启动训练或评估等任务。
- train.py: 负责训练模型的脚本。
- evaluate.py: 负责评估模型性能的脚本。
- visualize.py: 负责可视化模型输出的脚本。
启动文件的使用方法:
- 训练模型:
python src/train.py --config path/to/config.yaml
- 评估模型:
python src/evaluate.py --model path/to/model.pth --data path/to/data
- 可视化结果:
python src/visualize.py --model path/to/model.pth --data path/to/data
3. 项目的配置文件介绍
MOC-Detector 项目的配置文件主要用于定义训练、评估和可视化过程中的参数。配置文件通常为 .yaml
格式,位于 config/
目录下。
配置文件示例:
# config.yaml
train:
batch_size: 32
learning_rate: 0.001
epochs: 100
data:
dataset_path: "path/to/dataset"
image_size: [224, 224]
model:
backbone: "resnet18"
num_classes: 101
配置文件的使用方法:
在启动训练、评估或可视化脚本时,通过 --config
参数指定配置文件路径:
python src/train.py --config path/to/config.yaml
通过以上配置文件,可以灵活调整训练参数、数据路径和模型结构,以适应不同的实验需求。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考