MOC-Detector 项目使用教程

MOC-Detector 项目使用教程

1. 项目的目录结构及介绍

MOC-Detector 项目的目录结构如下:

MOC-Detector/
├── data/
│   └── ...
├── experiment/
│   └── ...
├── image/
│   └── ...
├── readme/
│   └── ...
├── scripts/
│   └── ...
├── src/
│   └── ...
├── .gitignore
├── LICENSE
├── NOTICE
├── README.md
├── pip-list.txt

目录介绍:

  • data/: 存放数据集相关文件。
  • experiment/: 存放实验配置和结果文件。
  • image/: 存放项目相关的图像文件。
  • readme/: 存放README文件的相关资源。
  • scripts/: 存放项目使用的脚本文件。
  • src/: 存放项目的源代码。
  • .gitignore: Git忽略文件配置。
  • LICENSE: 项目许可证文件。
  • NOTICE: 项目通知文件。
  • README.md: 项目介绍和使用说明。
  • pip-list.txt: 项目依赖的Python包列表。

2. 项目的启动文件介绍

MOC-Detector 项目的启动文件主要位于 src/ 目录下。以下是主要的启动文件及其功能介绍:

  • main.py: 项目的入口文件,负责初始化配置、加载数据、启动训练或评估等任务。
  • train.py: 负责训练模型的脚本。
  • evaluate.py: 负责评估模型性能的脚本。
  • visualize.py: 负责可视化模型输出的脚本。

启动文件的使用方法:

  1. 训练模型:
    python src/train.py --config path/to/config.yaml
    
  2. 评估模型:
    python src/evaluate.py --model path/to/model.pth --data path/to/data
    
  3. 可视化结果:
    python src/visualize.py --model path/to/model.pth --data path/to/data
    

3. 项目的配置文件介绍

MOC-Detector 项目的配置文件主要用于定义训练、评估和可视化过程中的参数。配置文件通常为 .yaml 格式,位于 config/ 目录下。

配置文件示例:

# config.yaml
train:
  batch_size: 32
  learning_rate: 0.001
  epochs: 100

data:
  dataset_path: "path/to/dataset"
  image_size: [224, 224]

model:
  backbone: "resnet18"
  num_classes: 101

配置文件的使用方法:

在启动训练、评估或可视化脚本时,通过 --config 参数指定配置文件路径:

python src/train.py --config path/to/config.yaml

通过以上配置文件,可以灵活调整训练参数、数据路径和模型结构,以适应不同的实验需求。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岑晔含Dora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值