thistle-tea 开源项目使用教程

thistle-tea 开源项目使用教程

thistle_tea vanilla private server thistle_tea 项目地址: https://gitcode.com/gh_mirrors/th/thistle_tea

1. 项目的目录结构及介绍

thistle-tea 项目是一个使用 Elixir 语言编写的魔兽世界私服项目。以下是项目的目录结构及各部分的简要介绍:

  • assets/: 包含前端资源,如 JavaScript 和 CSS 文件。
  • config/: 配置文件存放目录,包括数据库和服务器设置等。
  • db/: 存储项目所需的数据库文件。
  • lib/: 核心代码库,包含业务逻辑和模块。
  • maps/: 存储地图相关的数据。
  • native/: 本地代码,可能包含与操作系统相关的代码。
  • scripts/: 脚本文件目录,用于数据库生成和转换等。
  • test/: 测试代码目录,确保代码质量。
  • .github/workflows/: GitHub Actions 工作流文件,用于自动化构建和测试等。
  • Cargo.lockCargo.toml: Rust 依赖管理文件。
  • Dockerfile: 用于创建 Docker 容器的配置文件。
  • LICENSE: 项目许可证文件,本项目采用 AGPL-3.0 许可。
  • README.md: 项目说明文件。
  • mix.exsmix.lock: Elixir 项目的构建工具和依赖管理文件。
  • renovate.json: 用于管理依赖更新的配置文件。

2. 项目的启动文件介绍

项目的启动主要通过 mix 命令来执行。以下是一些基本的启动步骤:

  • 首先克隆项目到本地:

    git clone https://github.com/pikdum/thistle_tea.git
    
  • 进入项目目录,获取依赖:

    cd thistle_tea
    mix deps.get
    
  • 编译依赖:

    mix deps.compile
    
  • 如果需要编译前端资源,可以进入 assets 目录并安装依赖:

    cd assets && npm install && cd ..
    
  • 生成数据库:

    ./scripts/generate-mangos0-db.sh
    
  • 生成 DBC 数据库(这可能需要很长时间):

    ./scripts/generate-dbc-db.sh
    mix build_maps
    
  • 启动项目:

    iex -S mix
    

3. 项目的配置文件介绍

项目的配置文件主要位于 config/ 目录下。以下是一些重要的配置文件:

  • config/config.exs: 主配置文件,可以设置数据库连接信息、服务器端口等。
  • config/dev.exs: 开发环境配置文件。
  • config/prod.exs: 生产环境配置文件。

config.exs 中,你可以看到如下配置:

use Mix.Config

# 通用配置
config :thistle_tea,
  ecto_repos: [ThistleTea.Repo]

# 配置数据库
config :thistle_tea, ThistleTea.Repo,
  adapter: Ecto.Adapters.Postgres,
  username: "postgres",
  password: "postgres",
  database: "thistle_tea",
  hostname: "localhost",
  pool_size: 10

确保根据实际情况修改这些配置,以适应不同的运行环境。

thistle_tea vanilla private server thistle_tea 项目地址: https://gitcode.com/gh_mirrors/th/thistle_tea

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分解结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘瑛蓉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值