推荐使用KGNN-LS:知识图谱驱动的深度推荐系统

推荐使用KGNN-LS:知识图谱驱动的深度推荐系统

KGNN-LSA tensorflow implementation of Knowledge-aware Graph Neural Networks with Label Smoothness regularization项目地址:https://gitcode.com/gh_mirrors/kg/KGNN-LS

在数据挖掘和个性化推荐的世界中,KGNN-LS 是一个创新的开源项目,它将图神经网络(GNN)与标签平滑正则化相结合,以提高推荐系统的性能。该模型由H. Wang等人在KDD 2019会议上发表,并已公开源代码供社区使用。

1. 项目介绍

KGNN-LS的核心是利用知识图谱增强的图神经网络,目的是为推荐系统提供更丰富且深入的上下文信息。通过构建用户和物品之间的关系图,模型能理解用户的兴趣以及物品的特性,从而实现精准的推荐。此外,它还引入了标签平滑正则化,以促进更强大、更具适应性的学习过程。

2. 项目技术分析

该项目基于Python实现,利用src目录下的代码处理各种数据集。首先,预处理脚本(preprocess.py)负责从原始数据文件中提取信息并构造知识图谱。然后,main.py启动模型训练,可以根据不同的数据集调整参数设置。整个框架如项目图所示,显示了如何将GNN应用于知识图谱,以及如何应用标签平滑正则化。

3. 项目及技术应用场景

KGNN-LS适用于多种推荐场景,包括但不限于电影、音乐和餐饮领域。项目提供了MovieLens-20M(电影)、Last.FM(音乐)和大众点评餐饮数据集的示例。这种技术可以广泛应用于电子商务、社交媒体和新闻推荐等领域,帮助平台更好地理解用户行为,提升用户体验。

4. 项目特点

  • 知识图谱集成:模型能利用知识图谱中的额外信息,增强推荐的准确性。
  • 图神经网络:通过GNN对用户-物品关系进行建模,捕捉复杂的交互模式。
  • 标签平滑正则化:正则化策略有助于模型学习更加平滑的决策边界,减少过拟合。
  • 易于使用:项目提供清晰的数据处理和模型训练流程,方便研究人员复现结果或定制自己的推荐系统。
  • 多领域适用性:已验证在多个实际数据集上的有效性,适合不同行业的推荐需求。

总的来说,KGNN-LS是一个值得尝试的先进推荐系统解决方案,其结合了深度学习与知识图谱的力量,能够帮助开发者和研究者在推荐领域取得突破性进展。立即下载并体验,让您的推荐服务更具智慧吧!

KGNN-LSA tensorflow implementation of Knowledge-aware Graph Neural Networks with Label Smoothness regularization项目地址:https://gitcode.com/gh_mirrors/kg/KGNN-LS

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋韵庚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值