Urban PointCloud Processing 项目启动与配置教程
1. 项目目录结构及介绍
Urban PointCloud Processing 项目采用清晰的目录结构来组织代码和相关文件。以下是主要目录和文件的介绍:
docs/
:存放项目文档,包括用户手册、API文档等。data/
:用于存放输入数据集,如点云数据。src/
:源代码目录,包含了项目的核心代码。algorithm/
:包含点云处理的算法实现。datasets/
:包含数据加载和处理的代码。models/
:包含训练的模型代码。tools/
:包含一些工具函数和类。
tests/
:测试目录,包含所有测试用例。train/
:训练脚本和相关文件。infer/
:推断脚本和相关文件。requirements.txt
:项目依赖的Python包列表。README.md
:项目说明文件,通常包含项目描述、安装指南、使用说明等。setup.py
:Python包的配置文件,用于构建和打包项目。
2. 项目的启动文件介绍
项目的启动文件通常是 train.py
和 infer.py
。
-
train.py
:负责启动训练过程。该文件通常包括以下步骤:- 导入必要的模块和类。
- 加载和预处理数据。
- 初始化模型。
- 配置训练参数。
- 训练模型并保存训练结果。
-
infer.py
:负责启动推断过程。该文件通常包括以下步骤:- 导入必要的模块和类。
- 加载模型。
- 加载待处理的数据。
- 使用模型进行推断,并输出结果。
3. 项目的配置文件介绍
项目的配置文件通常使用 .yaml
或 .json
格式,用于定义项目的运行参数。以下是一个示例配置文件的内容:
# 配置文件示例 config.yaml
# 数据集路径
dataset:
train: ./data/train/
test: ./data/test/
# 模型设置
model:
name: PointNet
epochs: 100
batch_size: 32
learning_rate: 0.001
# 训练设置
train:
device: cpu
save_path: ./train/checkpoints/
# 推断设置
infer:
model_path: ./train/checkpoints/epoch_50.pth
result_path: ./infer/results/
在这个配置文件中,我们定义了数据集的路径、模型的类型和参数、训练时的设备选择和保存路径,以及推断时模型的加载路径和结果保存路径。这些配置可以在不修改代码的情况下,通过更改配置文件来调整项目的运行方式。