AutoKaggle项目安装与配置指南
AutoKaggle 项目地址: https://gitcode.com/gh_mirrors/au/AutoKaggle
1. 项目基础介绍
AutoKaggle是一个面向数据科学家,通过多代理协作系统自动完成数据科学管道的开源框架。它结合了迭代开发、全面测试和机器学习工具库,用于自动化Kaggle竞赛,同时保持了高度的可定制性。项目主要用于自动化数据科学竞赛流程,其中包括数据读取、计划制定、开发、评审和总结等多个阶段。
主要编程语言:Python
2. 项目使用的关键技术和框架
- 多代理系统:AutoKaggle通过五个专业化的代理(Reader、Planner、Developer、Reviewer、Summarizer)协同工作,贯穿六个关键竞赛阶段。
- 迭代开发与单元测试:通过调试和全面单元测试,确保代码的健壮性。
- 机器学习工具库:提供验证过的数据清洗、特征工程和建模功能。
- 全面报告:详细记录工作流程和决策过程。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Python 3.11
- Conda(用于Python环境管理)
- Git(用于克隆仓库)
安装步骤
-
克隆项目仓库
打开命令行,执行以下命令以克隆项目仓库:
git clone https://github.com/multimodal-art-projection/AutoKaggle.git
-
创建并激活Conda环境
克隆完成后,进入项目目录,并创建一个名为
AutoKaggle
的Conda环境:cd AutoKaggle conda create -n AutoKaggle python=3.11 conda activate AutoKaggle
-
安装依赖
在激活的环境中,执行以下命令安装项目所需的依赖:
pip install -r requirements.txt
-
配置OpenAI API
创建一个名为
api_key.txt
的文件,并填入您的OpenAI API密钥和基础URL:sk-xxx # 替换为您的API key https://api.openai.com/v1 # 基础URL
-
准备数据集
将Kaggle竞赛的数据集放在
./multi_agents/competition/
目录下,数据集应包含以下文件:- train.csv
- test.csv
- sample_submission.csv
- overview.txt(竞赛概述和数据描述)
请确保
overview.txt
文件中复制并粘贴了Kaggle竞赛主页上的“Overview”和“Data”部分。 -
运行AutoKaggle
使用以下命令运行AutoKaggle实验:
bash run_multi_agent.sh
按照以上步骤操作,您将能够成功安装并运行AutoKaggle项目。祝您使用愉快!
AutoKaggle 项目地址: https://gitcode.com/gh_mirrors/au/AutoKaggle
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考