AutoKaggle项目安装与配置指南

AutoKaggle项目安装与配置指南

AutoKaggle AutoKaggle 项目地址: https://gitcode.com/gh_mirrors/au/AutoKaggle

1. 项目基础介绍

AutoKaggle是一个面向数据科学家,通过多代理协作系统自动完成数据科学管道的开源框架。它结合了迭代开发、全面测试和机器学习工具库,用于自动化Kaggle竞赛,同时保持了高度的可定制性。项目主要用于自动化数据科学竞赛流程,其中包括数据读取、计划制定、开发、评审和总结等多个阶段。

主要编程语言:Python

2. 项目使用的关键技术和框架

  • 多代理系统:AutoKaggle通过五个专业化的代理(Reader、Planner、Developer、Reviewer、Summarizer)协同工作,贯穿六个关键竞赛阶段。
  • 迭代开发与单元测试:通过调试和全面单元测试,确保代码的健壮性。
  • 机器学习工具库:提供验证过的数据清洗、特征工程和建模功能。
  • 全面报告:详细记录工作流程和决策过程。

3. 项目安装和配置的准备工作

在开始安装之前,请确保您的系统满足以下要求:

  • Python 3.11
  • Conda(用于Python环境管理)
  • Git(用于克隆仓库)

安装步骤

  1. 克隆项目仓库

    打开命令行,执行以下命令以克隆项目仓库:

    git clone https://github.com/multimodal-art-projection/AutoKaggle.git
    
  2. 创建并激活Conda环境

    克隆完成后,进入项目目录,并创建一个名为AutoKaggle的Conda环境:

    cd AutoKaggle
    conda create -n AutoKaggle python=3.11
    conda activate AutoKaggle
    
  3. 安装依赖

    在激活的环境中,执行以下命令安装项目所需的依赖:

    pip install -r requirements.txt
    
  4. 配置OpenAI API

    创建一个名为api_key.txt的文件,并填入您的OpenAI API密钥和基础URL:

    sk-xxx                           # 替换为您的API key
    https://api.openai.com/v1       # 基础URL
    
  5. 准备数据集

    将Kaggle竞赛的数据集放在./multi_agents/competition/目录下,数据集应包含以下文件:

    • train.csv
    • test.csv
    • sample_submission.csv
    • overview.txt(竞赛概述和数据描述)

    请确保overview.txt文件中复制并粘贴了Kaggle竞赛主页上的“Overview”和“Data”部分。

  6. 运行AutoKaggle

    使用以下命令运行AutoKaggle实验:

    bash run_multi_agent.sh
    

按照以上步骤操作,您将能够成功安装并运行AutoKaggle项目。祝您使用愉快!

AutoKaggle AutoKaggle 项目地址: https://gitcode.com/gh_mirrors/au/AutoKaggle

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秦言舸Gale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值