TeslaMate项目开发环境搭建与贡献指南

TeslaMate项目开发环境搭建与贡献指南

teslamate teslamate 项目地址: https://gitcode.com/gh_mirrors/tes/teslamate

项目概述

TeslaMate是一个开源的Tesla车辆数据监控平台,它能够记录并可视化Tesla车辆的各种数据指标。本文将详细介绍如何搭建TeslaMate的开发环境,以及如何进行代码贡献。

开发环境要求

在开始开发前,请确保你的系统满足以下最低要求:

  1. Elixir语言环境:版本不低于1.16.2(OTP 26)
  2. PostgreSQL数据库:版本不低于16
  3. MQTT代理(可选):如mosquitto等
  4. NodeJS:版本不低于20.15.0

初始设置步骤

1. 数据库准备

TeslaMate需要两个数据库:一个用于开发,一个用于测试。

# 下载依赖并创建开发数据库
mix setup

# 创建测试数据库
MIX_ENV=test mix ecto.setup

2. 本地运行项目

启动一个iex会话:

iex -S mix phx.server

启动后,你可以使用Tesla账户登录系统。

开发工作流

热重载功能

TeslaMate支持热重载,修改代码后无需重启服务:

  1. 直接刷新浏览器页面http://localhost:4000
  2. 或者在iex会话中重新加载特定模块:
iex> r TeslaMate.Vehicles.Vehicle

如果只需要编译修改:

mix compile

代码格式化

TeslaMate项目使用统一的代码风格:

mix format

国际化支持

如果你需要添加或修改翻译内容:

mix gettext.extract --merge

测试流程

在提交代码前,建议运行完整的CI测试:

mix ci

该命令会执行:

  1. 代码格式检查
  2. 所有单元测试

Grafana仪表板开发

TeslaMate使用Grafana进行数据可视化,以下是开发仪表板的步骤:

1. 本地Grafana环境

使用以下docker-compose配置启动Grafana:

services:
  grafana:
    image: teslamate-grafana:latest
    environment:
      - DATABASE_USER=postgres
      - DATABASE_PASS=postgres
      - DATABASE_NAME=teslamate_dev
      - DATABASE_HOST=host.docker.internal
    ports:
      - 3000:3000
    volumes:
      - grafana-data:/var/lib/grafana

volumes:
  grafana-data:

注意:Linux系统需要用主机实际IP替换host.docker.internal

2. 构建并运行

make grafana
docker compose up grafana

访问http://localhost:3000,使用默认凭证登录(用户名:admin,密码:admin)

3. 仪表板修改流程

  1. 在Grafana界面编辑仪表板
  2. 点击保存按钮,选择"Save JSON to file"
  3. 将JSON文件保存到./grafana/dashboards/目录
  4. 重新构建镜像并启动容器

VS Code扩展推荐

Grafana官方提供了VS Code扩展,可以:

  • 直接在VS Code中打开仪表板JSON文件
  • 连接到Grafana实例进行实时预览
  • 在编辑器UI中修改仪表板
  • 将修改保存回原始JSON文件

最佳实践建议

  1. 在提交PR前,确保本地测试全部通过
  2. 遵循项目的代码风格规范
  3. 修改仪表板时,先在本地验证效果
  4. 添加新功能时,考虑同时提供相应的测试用例

通过遵循这些指南,你可以高效地为TeslaMate项目做出贡献,并确保你的代码变更符合项目标准。

teslamate teslamate 项目地址: https://gitcode.com/gh_mirrors/tes/teslamate

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/606bcce3cac5 在机器学习深度学习领域,数据集是构建和优化模型的关键基础。本文聚焦于一个名为“黄色车牌数据集(小轿车、大货车)”的资源,该数据集包含约800张黄色车牌图像,涵盖小轿车和大货车等多种车辆类型。黄色车牌在中国大陆主要用于大型车辆,如货车和客车,蓝色车牌相比,黄色车牌通常代表大吨位或营运车辆,而蓝色车牌则多用于私家车。 数据集中的图像样本XML文件相结合,XML文件作为结构化数据,记录了图像中车牌的边界框坐标等元数据,为训练目标检测模型提供了重要信息。目标检测模型,例如YOLO、SSD和Faster R-CNN,能够精准定位并识别图像中的车牌区域。深度学习技术,尤其是卷积神经网络(CNN),在车牌识别任务中发挥着核心作用。CNN通过提取图像特征并结合全连接层进行分类,能够有效处理车牌识别任务。此外,预训练模型如VGG、ResNet和Inception经过微调后,可适应特定的车牌识别需求。基于Transformer的DETR等端到端模型也为车牌识别提供了新的解决方案。 在模型训练过程中,数据集通常被划分为训练集、验证集和测试集。训练集用于模型训练,验证集用于调整参数以防止过拟合,测试集则用于评估模型在未知数据上的性能。为了提升模型的泛化能力,数据增强技术如随机翻转、裁剪和旋转图像被广泛应用,以模拟不同的拍摄条件。 黄色车牌识别系统在交通安全、交通监控、车辆追踪和管理等领域具有重要意义。它可用于自动收费、违规行为检测等功能。由于中国各地车牌格式存在差异,模型需要具备足够的适应性,这也要求数据集具有广泛的覆盖范围和多样性。总之,“黄色车牌数据集”为开发高精度车牌识别模型提供了重要资源。结合深度学习技术和目标检测算法,可构建出服务于智能交通系统的高效车牌识别系统。XML文件的解析和利用在训练过
### 如何在 CasaOS 上安装和配置 TeslaMate #### 选择合适的环境准备 为了顺利运行 TeslaMate,在 CasaOS 中需先确认已具备适合的 Docker 环境,因为 TeslaMate 支持通过 Docker 方便快捷地部署[^1]。 #### 部署 TeslaMate 应用容器 利用 CasaOS 的应用商店功能或者命令行方式来拉取并启动 TeslaMate 容器镜像。对于熟悉命令行操作的用户来说,可以通过 SSH 登录到 CasaOS 主机,并执行如下指令: ```bash docker pull teslamate/teslamate:latest docker run -d \ --name=teslamate \ -e DATABASE_URL="postgresql://teslamate:YOUR_PASSWORD@db:5432/teslamate?sslmode=disable" \ -v /etc/localtime:/etc/localtime:ro \ -v teslamate-data:/opt/teslamate \ teslamate/teslamate ``` 上述命令中的 `DATABASE_URL` 参数指定了连接 PostgreSQL 数据库的方式;这里假设数据库服务同样由 Docker 提供并且命名为 "db"。 #### 设置依赖的服务组件 考虑到 TeslaMate 运作过程中可能涉及到的数据持久化需求以及 Grafana 可视化界面的支持,建议一同设置好 PostgresSQL 和 Grafana 两个辅助模块。这一步骤通常也能够借助 CasaOS 或者直接采用 Docker Compose 文件批量完成多个关联服务的一键式创建初始化工作。 #### 访问验证 当所有必要的服务均已成功上线之后,打开浏览器输入对应的 IP 地址加上端口号即可访问 TeslaMate Web UI 页面,按照提示使用 Tesla 账号授权登录,进而查看车辆状态等信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

时昕海Minerva

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值