Mengzi3 开源项目使用教程
Mengzi3 项目地址: https://gitcode.com/gh_mirrors/me/Mengzi3
1. 项目的目录结构及介绍
Mengzi3 项目的目录结构如下:
Mengzi3/
├── assets/
├── examples/
├── finetune_demo/
├── .gitignore
├── LICENSE
├── README.md
└── requirements.txt
目录结构介绍
- assets/: 存放项目相关的资源文件,如图片、文档等。
- examples/: 包含一些示例代码,帮助用户快速上手项目。
- finetune_demo/: 包含微调模型的示例代码和数据。
- .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
- LICENSE: 项目的开源许可证文件,本项目使用 Apache-2.0 许可证。
- README.md: 项目的介绍文档,包含项目的基本信息、使用方法等。
- requirements.txt: 项目依赖的 Python 包列表,用户可以通过
pip install -r requirements.txt
安装所有依赖。
2. 项目的启动文件介绍
Mengzi3 项目的主要启动文件位于 examples/
目录下。以下是一个简单的启动示例:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Langboat/Mengzi3-13B-Base", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Langboat/Mengzi3-13B-Base", device_map="auto", trust_remote_code=True)
inputs = tokenizer('指令:回答以下问题 输入:介绍一下孟子 输出:', return_tensors='pt')
if torch.cuda.is_available():
inputs = inputs.to('cuda')
pred = model.generate(**inputs, max_new_tokens=512, repetition_penalty=1.01, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(pred[0], skip_special_tokens=True))
启动文件介绍
- AutoTokenizer: 用于加载和使用预训练的 tokenizer。
- AutoModelForCausalLM: 用于加载和使用预训练的语言模型。
- inputs: 输入文本,通过 tokenizer 进行编码。
- model.generate: 生成模型的输出。
3. 项目的配置文件介绍
Mengzi3 项目的配置文件主要包括 requirements.txt
和 README.md
。
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 包及其版本。用户可以通过以下命令安装所有依赖:
pip install -r requirements.txt
README.md
README.md
文件是项目的介绍文档,包含以下内容:
- 项目的基本信息
- 快速开始指南
- 性能评测结果
- 模型微调方法
- 声明和许可证信息
用户可以通过阅读 README.md
文件快速了解项目的基本情况和使用方法。
以上是 Mengzi3 开源项目的使用教程,希望对您有所帮助。
Mengzi3 项目地址: https://gitcode.com/gh_mirrors/me/Mengzi3
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考