深度双分辨率网络(DDRNet)—— 实时且高精度的路面场景语义分割工具包
DDRNet项目地址:https://gitcode.com/gh_mirrors/dd/DDRNet
在Cityscapes和Camvid数据集上实现了准确性和速度之间业界领先的平衡,无需依赖TensorRT等推理加速器或Mapillary等额外数据源!
我们的方法的整体架构展示。
深度聚合金字塔池化模块(DAPPM)细节解析。
项目概览
“深度双分辨率网络”(DDRNet)是针对实时路网场景语义分割设计的一个高效开源实现。该框架基于先进的模型设计理念,有效解决了实时处理中的准确率瓶颈,为智能驾驶、机器人导航等领域提供了强大的技术支持。借助 DDRNet,开发者能够获得既快速又精准的图像分割效果,极大提升了应用的实用性和响应速度。
技术剖析
DDRNet 核心在于其独特的“深聚合金字塔池化模块”(DAPPM),优化了传统池化层,在不同尺度信息融合中取得了突破,保障了模型在减少计算成本的同时维持高性能。它结合轻量级网络结构,
DDRNet项目地址:https://gitcode.com/gh_mirrors/dd/DDRNet
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考