2024-LangChain4J-demo:展示Java应用中LLM实力的演示项目

2024-LangChain4J-demo:展示Java应用中LLM实力的演示项目

2024-LangChain4J-demo 2024-LangChain4J-demo 项目地址: https://gitcode.com/gh_mirrors/20/2024-LangChain4J-demo

项目介绍

2024-LangChain4J-demo 是一个基于 Spring Boot 的开源项目,旨在演示如何利用 LangChain4j 创建 Java 应用程序,并集成大型语言模型(LLM)。这个项目提供了多个示例,涵盖了从生成图像到复杂对话系统的多种功能,用户可以通过这些示例快速学习并掌握 LangChain4j 的使用方法。

项目技术分析

LangChain4Jdemo 采用了 Spring Boot 框架,这使得项目在搭建和部署方面更加便捷。它利用 LangChain4j 库,这是一个为 Java 提供了简单接口的库,可以轻松地将 LLMs(如 GPT-4o、GPT-4o-mini、Phi-4 和 tinyllama)集成到 Java 应用程序中。

项目支持多种配置和运行环境,包括完全在本地运行(使用 Docker、Ollama 和 Qdrant),在云环境中运行(使用 Azure OpenAI 或 GitHub Models,以及 Azure AI Search)。这种灵活的配置方式使得开发者可以根据自己的需求和资源情况进行选择。

项目及技术应用场景

以下是 2024-LangChain4J-demo 的几个关键应用场景:

  1. 图像生成:使用 Dalle-3 模型生成图像。
  2. 文本生成:利用 GPT-4o、GPT-4o-mini、Phi-4 和 tinyllama 等模型生成文本。
  3. 上下文记忆的聊天对话:创建可以记住上下文的聊天会话。
  4. 数据存入向量数据库并使用:将数据存入向量数据库,并进行查询。
  5. Easy RAG 使用演示:LangChain4j 的 Easy RAG 功能及其完整示例。
  6. 函数调用和结构化输出:展示如何在应用程序中使用函数调用和生成结构化输出(JSON Schemas)。

项目特点

多配置支持

项目提供了多种配置选项,以适应不同的运行环境和资源限制:

  • Azure 配置:使用 Azure OpenAI 和 Azure AI Search。
  • 本地小型配置:使用 Ollama 和 Qdrant,适合资源有限的环境。
  • 本地高质量配置:使用 Ollama,但需要更多的 CPU 和 RAM 资源。
  • GitHub Models 配置:使用 GitHub 提供的模型。
  • Elasticsearch 配置:使用 Elasticsearch 代替 Qdrant 作为嵌入存储。

灵活的环境适应性

无论是本地运行还是云端部署,项目都能够根据不同的环境进行调整,提供了多种 Docker Compose 文件来简化配置过程。

丰富的演示示例

项目包含多个演示示例,覆盖了从图像生成到复杂对话系统的各种功能,这些示例可以帮助开发者快速理解和掌握 LangChain4j 的使用。

高度和可定制性

通过不同的配置文件和 Spring Boot 配置选项,开发者可以轻松地根据自己的需求调整项目配置。

总结

2024-LangChain4J-demo 是一个功能强大、高度可定制且易于使用的开源项目,它不仅展示了 Java 应用程序中集成 LLMs 的可能性,还为开发者提供了一个学习 LangChain4j 的绝佳平台。无论你是初学者还是经验丰富的开发者,都可以通过该项目快速掌握 LLMs 在 Java 中的应用,并在此基础上开发出更多创新的应用程序。立即尝试 2024-LangChain4J-demo,开启你的 LLMs 集成之旅吧!

2024-LangChain4J-demo 2024-LangChain4J-demo 项目地址: https://gitcode.com/gh_mirrors/20/2024-LangChain4J-demo

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### Quarkus与LangChain4j集成及使用案例 Quarkus 是一种专为 Java 开发者设计的 Kubernetes 原生框架,能够优化基于 JVM 的应用性能并支持云原生开发环境。而 LangChain4j 则是用于简化大型语言模型 (LLM) 和 Java 应用程序之间集成的一个框架[^2]。 对于希望将这两项技术结合起来使用的开发者来说,可以考虑以下几个方面: #### 配置依赖关系 为了使 Quarkus 项目能顺利引入 LangChain4j 功能,在 `pom.xml` 文件中添加相应的 Maven 依赖项是非常重要的一步。这通常涉及到指定版本号以及任何必要的仓库地址来获取最新的库文件。 ```xml <dependency> <groupId>com.langchain4j</groupId> <artifactId>langchain4j-core</artifactId> <version>${langchain4j.version}</version> </dependency> ``` #### 初始化ChatLanguageModel实例 鉴于未来的新特性会围绕 ChatLanguageModel API 展开工作而不是传统的 LanguageModel 接口[^3],因此建议创建一个专门的服务类或者配置类来进行初始化操作,并通过 CDI 或其他方式将其注入到业务逻辑层当中去。 ```java import com.langchain4j.chat.ChatLanguageModel; import jakarta.enterprise.context.ApplicationScoped; @ApplicationScoped public class LLMService { private final ChatLanguageModel chatModel; public LLMService() { this.chatModel = new ChatLanguageModel.Builder() .setApiKey(System.getenv("API_KEY")) .build(); } // 提供对外访问的方法... } ``` #### 构建RESTful接口 利用 Quarkus 自带的强大 RESTEasy 支持,很容易就可以构建起一套完整的 HTTP 请求处理机制。这样不仅可以让前端更容易地调用后端服务,同时也方便后续扩展更多功能模块。 ```java import org.eclipse.microprofile.rest.client.inject.RestClient; import javax.ws.rs.GET; import javax.ws.rs.Path; import javax.ws.rs.Produces; import javax.ws.rs.core.MediaType; @Path("/api/llm") @Produces(MediaType.APPLICATION_JSON) public class LLMApiResource { @Inject LLMService llmService; @GET @Path("/query/{text}") public String query(@PathParam("text") String text){ return llmService.query(text); } } ``` 上述代码片段展示了如何在一个典型的 Quarkus 应用程序里实现与 LangChain4j 的基本交互模式。当然实际应用场景可能会更加复杂多变,具体实现细节还需要根据项目的特殊需求做适当调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

房栩曙Evelyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值