SmartScan 项目安装与配置指南
1. 项目基础介绍
SmartScan 是一个创新的图片组织和搜索应用,基于 CLIP 模型自动按照内容相似性对图片进行分类,并支持基于文本的图片搜索,使得图库管理变得轻松简单。
该项目主要使用的编程语言是 Kotlin。
2. 项目使用的关键技术和框架
- CLIP 模型:内容相似性比较的核心技术。
- ONNX Runtime:用于在设备上运行 ONNX 模型,实现机器学习推理。
- Jetpack Compose:Android 的现代工具包,用于构建原生界面。
- ON-Device Machine Learning:确保所有处理(包括图片组织和文本搜索)都在设备上进行,保护隐私并支持离线功能。
3. 项目安装和配置的准备工作
在开始安装 SmartScan 之前,请确保您的开发环境满足以下要求:
- 操作系统:推荐使用最新版本的 macOS 或 Windows。
- Android Studio:安装并更新到最新版本,以便提供最佳的 Kotlin 和 Android 开发支持。
- Java Development Kit (JDK):确保安装了适用于 Kotlin 开发的 JDK。
- Git:安装 Git 并配置好,以便能够克隆和检出代码。
4. 详细安装步骤
步骤 1:克隆项目仓库
打开命令行工具,使用以下命令克隆项目仓库:
git clone https://github.com/dev-diaries41/smartscan.git
步骤 2:导入项目到 Android Studio
- 打开 Android Studio。
- 选择 "Open" 或 "Import Project"。
- 导航至克隆的项目文件夹,选择项目文件夹中的
app
目录。 - 点击 "OK" 等待 Android Studio 构建项目。
步骤 3:配置项目
- 在 Android Studio 中打开项目的
build.gradle
文件。 - 确保所有的依赖项都已正确配置。
- 根据需要配置
AndroidManifest.xml
文件,比如权限申请等。
步骤 4:运行项目
- 连接 Android 设备或启动 Android 模拟器。
- 在 Android Studio 中点击 "Run" 按钮。
- 选择您的设备或模拟器,等待项目部署并启动。
步骤 5:进行初步测试
- 按照项目
README
中的说明,设置目标文件夹和目的地文件夹。 - 尝试进行自动分类测试和图片搜索,以验证应用的功能。
完成以上步骤后,您应该能够成功运行 SmartScan 项目,并开始探索其功能。如果在安装过程中遇到任何问题,请检查项目的 README
文件,或前往项目的 GitHub Issues 页面寻求帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考