Sample Factory 开源项目教程
1. 项目介绍
Sample Factory 是一个专注于高效同步和异步实现策略梯度(如 PPO)的高吞吐量强化学习库。它旨在通过优化算法架构和资源利用率,在单机设置下实现高效率的训练。Sample Factory 支持多种训练模式,包括同步和异步训练、单进程模式(便于调试),以及在 CPU 和 GPU 加速环境中的最佳性能。此外,它还支持单代理和多代理训练、自对弈、多策略训练、基于种群的训练(PBT)等功能。
2. 项目快速启动
安装
首先,从 PyPI 安装 Sample Factory:
pip install sample-factory
Sample Factory 支持 Linux 和 macOS,目前不支持 Windows。
快速启动
使用命令行训练一个代理,例如使用 Mujoco 环境:
python -m sf_examples.mujoco.train_mujoco --env=mujoco_ant --experiment=Ant --train_dir=/train_dir
训练完成后,可以使用以下命令评估代理:
python -m sf_examples.mujoco.enjoy_mujoco --env=mujoco_ant --experiment=Ant --train_dir=/train_dir
或者使用更快的评估脚本(无渲染):
python -m sf_examples.mujoco.fast_eval_mujoco --env=mujoco_ant --experiment=Ant --train_dir=/train_dir --sample_env_episodes=128 --num_workers=16 --num_envs_per_worker=2
3. 应用案例和最佳实践
应用案例
Sample Factory 已被广泛应用于多个领域,包括但不限于:
- 视频游戏:训练复杂的代理以在视频游戏中达到高水平表现。
- 机器人:通过模拟到现实的转移,训练机器人执行复杂任务。
- 多人在线射击游戏:使用自对弈和基于种群的训练技术,训练高度能力的代理。
最佳实践
- 调试模式:在单进程模式下运行以简化调试过程。
- 性能优化:在 GPU 加速环境中运行以最大化吞吐量。
- 多策略训练:利用多策略训练和自对弈技术,提升代理的多样性和适应性。
4. 典型生态项目
Sample Factory 与其他强化学习生态项目有良好的集成,包括:
- Tensorboard:用于监控实验和可视化训练过程。
- Weights and Biases (WandB):用于详细记录和分析实验数据。
- Hugging Face 🤗:用于上传训练模型和指标到 Hugging Face Hub。
这些工具和平台的集成,使得 Sample Factory 成为一个功能强大且易于扩展的强化学习框架。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考