开源项目最佳实践:sktime 时间序列机器学习教程

开源项目最佳实践:sktime 时间序列机器学习教程

sktime-tutorial-pydata-amsterdam-2020 Introduction to Machine Learning with Time Series at PyData Festival Amsterdam 2020 sktime-tutorial-pydata-amsterdam-2020 项目地址: https://gitcode.com/gh_mirrors/sk/sktime-tutorial-pydata-amsterdam-2020

1. 项目介绍

本项目是基于 sktime 开源库的教程,旨在介绍如何使用时间序列数据进行机器学习。sktime 是一个针对时间序列数据挖掘和机器学习的 Python 库,它提供了丰富的算法和工具,用于处理时间序列数据的问题。本项目通过一组教程,帮助用户理解时间序列数据的特点,掌握使用 sktime 和 scikit-learn 构建机器学习模型的方法,并鼓励用户参与到 sktime 的开源贡献中来。

2. 项目快速启动

在开始之前,请确保您的系统中已安装了 Python 环境,推荐使用 Anaconda 发行版,因为它包含了 Jupyter Notebook,便于运行和编辑代码。

安装 sktime

首先,您需要安装 sktime 库。可以使用 pip 命令进行安装:

pip install sktime

克隆项目

接下来,克隆本项目到您的本地环境中:

git clone https://github.com/sktime/sktime-tutorial-pydata-amsterdam-2020.git

运行 Jupyter Notebook

进入项目目录,启动 Jupyter Notebook:

cd sktime-tutorial-pydata-amsterdam-2020
jupyter notebook

这将打开 Jupyter Notebook 的界面,您可以看到项目中的各个教程笔记本。

3. 应用案例和最佳实践

在本项目中,您将学习如何:

  • 识别时间序列数据中的不同学习问题(或任务)。
  • 使用 sktime 和 scikit-learn 构建机器学习模型来解决问题。
  • 如何为 sktime 做贡献。

每个案例都会提供具体的代码实现和解释,帮助您理解和应用。

4. 典型生态项目

sktime 作为时间序列机器学习的开源项目,其生态系统包含了多个与之相关的项目。以下是一些典型的生态项目:

  • tsfresh:用于提取时间序列特征的库。
  • FeatureEngine:提供了多种特征工程的方法。
  • Prophet:由 Facebook 开发的时间序列预测工具。

通过学习本教程,您将能够更好地理解这些项目,并在实际工作中运用它们。

以上就是 sktime 时间序列机器学习教程的开源项目最佳实践。希望这些内容能够帮助您快速上手,并激发您对时间序列数据挖掘的兴趣。

sktime-tutorial-pydata-amsterdam-2020 Introduction to Machine Learning with Time Series at PyData Festival Amsterdam 2020 sktime-tutorial-pydata-amsterdam-2020 项目地址: https://gitcode.com/gh_mirrors/sk/sktime-tutorial-pydata-amsterdam-2020

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沈韬淼Beryl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值