BAGEL:统一的多模态理解和生成模型

BAGEL:统一的多模态理解和生成模型

Bagel Bagel 项目地址: https://gitcode.com/gh_mirrors/bagel7/Bagel

项目介绍

BAGEL(Bagel)是一个开源的多模态基础模型,拥有70亿个活跃参数(总计140亿个),在大规模交错的多模态数据上进行了训练。BAGEL不仅在标准的多模态理解排行榜上超越了当前顶级开源的视觉语言模型(VLM)如Qwen2.5-VL和InternVL-2.5,而且在文本到图像的质量上也与强大的专业生成器SD3不相上下。此外,BAGEL在传统的图像编辑场景中展现了比领先的开源模型更优的定性结果,并且能够扩展到自由形式的视觉操纵、多视角合成和世界导航等任务,这些能力构成了超越以往图像编辑模型的世界建模任务。

项目技术分析

BAGEL采用了混合转换器专家(MoT)架构,以最大化模型从丰富的多模态信息中学习的能力。遵循同样的容量最大化原则,它使用两个独立的编码器来捕捉图像的像素级和语义级特征。整体框架遵循下一组标记预测范式,模型被训练为预测下一组语言或视觉标记作为压缩目标。

BAGEL通过预训练、持续训练和对语言、图像、视频和网页数据中数万亿交错多模态标记的监督微调来扩展MoT的容量。它在标准的理解和生成基准测试中超越了开源模型,并展示了高级的上下文多模态能力,如自由形式的图像编辑、未来帧预测、3D操纵、世界导航和顺序推理。

项目及技术应用场景

BAGEL的应用场景广泛,涵盖了多模态理解和生成任务,包括但不限于:

  • 多模态理解:在图像和文本结合的场景中,如图像分类、文本描述生成、视觉问答等。
  • 文本到图像生成:根据文本描述生成高质量的图像,适用于图像合成和创意设计领域。
  • 图像编辑:实现自由形式的图像编辑,包括风格转换、图像修复、视觉效果增强等。

BAGEL的强大能力使其在学术研究和工业应用中具有广泛的潜力。

项目特点

以下是BAGEL项目的几个关键特点:

  1. 混合转换器专家架构:通过MoT架构,BAGEL能够更有效地从多模态数据中学习。
  2. 多级特征捕捉:使用两个独立的编码器分别捕捉图像的像素级和语义级特征。
  3. 多模态能力:在理解和生成任务中,BAGEL表现出色,特别是在图像编辑和世界建模任务中。
  4. 性能优势:在多个基准测试中,BAGEL超越了其他开源模型,展现了卓越的性能。
  5. 开放性和扩展性:BAGEL的开源属性使其能够被社区进一步改进和扩展。

BAGEL项目的出现,为多模态理解和生成领域带来了新的视角和技术突破,为研究和开发人员提供了一个强大的工具。


通过以上介绍,可以看出BAGEL项目在多模态理解和生成领域的重要性和创新性。对于研究人员和开发者来说,BAGEL不仅是一个强大的工具,更是一个探索多模态交互和理解新领域的起点。我们鼓励更多的用户尝试并使用BAGEL,共同推动多模态技术的研究和应用。

Bagel Bagel 项目地址: https://gitcode.com/gh_mirrors/bagel7/Bagel

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓炯娓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值