开源项目:ollama-benchmark 使用教程
一、项目目录结构及介绍
ollama-benchmark
项目的目录结构如下:
.
├── .github/ # 存放GitHub工作流程文件
│ └── workflows/
├── tests/ # 存放测试相关文件
├── .gitignore # 指定git忽略的文件
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── llm-benchmark.gif # 项目相关动图
├── pyproject.toml # Python项目配置文件
├── requirements.txt # 项目依赖文件
├── setup.py # 项目安装脚本
.github/
: 存放GitHub Actions的工作流程文件,用于自动化项目的构建、测试等过程。tests/
: 存放单元测试和集成测试的代码。.gitignore
: 指定Git应该忽略的文件和目录,以避免将不必要的文件提交到仓库。LICENSE
: 项目使用的开源许可证文件,本项目采用MIT许可证。README.md
: 项目的主要说明文件,包含了项目的简介、安装和使用指南等信息。llm-benchmark.gif
: 可能是一个展示项目功能或结果的动图。pyproject.toml
: Python项目配置文件,用于定义项目信息和依赖。requirements.txt
: 列出了项目运行所依赖的外部Python包。setup.py
: 项目安装脚本,用于安装Python包。
二、项目的启动文件介绍
ollama-benchmark
项目的启动主要是通过命令行工具进行。在项目根目录下,你可以使用以下命令来运行项目:
# 直接运行
llm_benchmark run
如果需要指定不发送系统信息和性能结果到远程服务器,可以使用以下命令:
llm_benchmark run --no-sendinfo
此外,如果你有自己的ollama
可执行文件路径,可以使用以下命令来指定:
llm_benchmark run --ollamabin=<ollama可执行文件路径>
三、项目的配置文件介绍
ollama-benchmark
项目的配置主要是通过命令行参数来实现的。如果要使用自定义的性能测试模型,需要创建一个YAML格式的配置文件,如下所示:
file_name: "custombenchmarkmodels.yml"
version: "2.0.custom"
models:
- model: "deepseek-r1:1.5b"
- model: "qwen:0.5b"
然后,通过以下命令运行性能测试,并指向你的自定义配置文件:
llm_benchmark run --custombenchmark=path/to/custombenchmarkmodels.yml
以上是ollama-benchmark
开源项目的基本使用教程,希望对你有所帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考