【亲测免费】 开源项目:ollama-benchmark 使用教程

开源项目:ollama-benchmark 使用教程

一、项目目录结构及介绍

ollama-benchmark项目的目录结构如下:

.
├── .github/               # 存放GitHub工作流程文件
│   └── workflows/
├── tests/                 # 存放测试相关文件
├── .gitignore             # 指定git忽略的文件
├── LICENSE               # 项目许可证文件
├── README.md             # 项目说明文件
├── llm-benchmark.gif      # 项目相关动图
├── pyproject.toml         # Python项目配置文件
├── requirements.txt       # 项目依赖文件
├── setup.py              # 项目安装脚本
  • .github/: 存放GitHub Actions的工作流程文件,用于自动化项目的构建、测试等过程。
  • tests/: 存放单元测试和集成测试的代码。
  • .gitignore: 指定Git应该忽略的文件和目录,以避免将不必要的文件提交到仓库。
  • LICENSE: 项目使用的开源许可证文件,本项目采用MIT许可证。
  • README.md: 项目的主要说明文件,包含了项目的简介、安装和使用指南等信息。
  • llm-benchmark.gif: 可能是一个展示项目功能或结果的动图。
  • pyproject.toml: Python项目配置文件,用于定义项目信息和依赖。
  • requirements.txt: 列出了项目运行所依赖的外部Python包。
  • setup.py: 项目安装脚本,用于安装Python包。

二、项目的启动文件介绍

ollama-benchmark项目的启动主要是通过命令行工具进行。在项目根目录下,你可以使用以下命令来运行项目:

# 直接运行
llm_benchmark run

如果需要指定不发送系统信息和性能结果到远程服务器,可以使用以下命令:

llm_benchmark run --no-sendinfo

此外,如果你有自己的ollama可执行文件路径,可以使用以下命令来指定:

llm_benchmark run --ollamabin=<ollama可执行文件路径>

三、项目的配置文件介绍

ollama-benchmark项目的配置主要是通过命令行参数来实现的。如果要使用自定义的性能测试模型,需要创建一个YAML格式的配置文件,如下所示:

file_name: "custombenchmarkmodels.yml"
version: "2.0.custom"
models:
  - model: "deepseek-r1:1.5b"
  - model: "qwen:0.5b"

然后,通过以下命令运行性能测试,并指向你的自定义配置文件:

llm_benchmark run --custombenchmark=path/to/custombenchmarkmodels.yml

以上是ollama-benchmark开源项目的基本使用教程,希望对你有所帮助。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

舒璇辛Bertina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值