基于Embodied Chain-of-Thought的开源项目教程
1. 项目介绍
Embodied Chain-of-Thought (ECoT) 是一种新颖的机器人政策训练方法。该方法通过训练一个视觉-语言-行动模型,使其能够针对指令和图像生成推理步骤,然后再选择机器人行动,从而实现更好的性能、可解释性和泛化能力。本项目基于OpenVLA构建,为研究者和开发者提供了深入理解和应用ECoT算法的途径。
2. 项目快速启动
为了快速启动本项目,您需要遵循以下步骤:
首先,确保您已经安装了必要的依赖项。以下是项目所需的Python库:
pip install torch transformers
接下来,您可以使用以下代码加载ECoT政策并进行推理:
from transformers import AutoModelForVision2Seq, AutoProcessor
import torch
# 设置设备为CUDA(如果可用)
device = "cuda"
# 指定模型路径
path_to_hf = "Embodied-CoT/ecot-openvla-7b-bridge"
# 加载处理器
processor = AutoProcessor.from_pretrained(path_to_hf, trust_remote_code=True)
# 加载模型
vla = AutoModelForVision2Seq.from_pretrained(path_to_hf, torch_dtype=torch.bfloat16).to(device)
# 准备观察和指令
observation = "<ROBOT IMAGE OBSERVATION HERE>"
instruction = "<YOUR INSTRUCTION HERE>"
# 创建提示
prompt = "一个好奇的用户和人工智能助手之间的对话。\n助手给出详尽、礼貌的答案来回应用户的问题。\n用户:机器人应该采取什么行动来完成{instruction.lower()}?助手:任务:"
# 处理输入
inputs = processor(prompt, image=observation).to(device, dtype=torch.bfloat16)
# 生成行动
action, generated_ids = vla.predict_action(**inputs, unnorm_key="bridge_orig", max_new_tokens=1024)
# 解码生成的文本
generated_text = processor.batch_decode(generated_ids)[0]
# 输出生成的行动
print(generated_text)
请替换<ROBOT IMAGE OBSERVATION HERE>
和<YOUR INSTRUCTION HERE>
为实际的机器人的观察数据和您希望机器人执行的指令。
3. 应用案例和最佳实践
- 案例一:在桥梁环境中,机器人需要根据视觉输入和指令,如“将箱子推到标记处”,生成一系列推理步骤并执行相应的动作。
- 最佳实践:在训练模型时,确保使用足够的数据集,并且数据集应该包含多样化的环境和任务,以提高模型的泛化能力。
4. 典型生态项目
本项目可以与多种机器人硬件和软件生态系统集成,例如:
- 使用TensorRT-LLM进行模型优化,以提高推理速度。
- 集成到ROS(机器人操作系统)中,以实现与各种机器人硬件的兼容性。
- 结合SLAM(同步定位与映射)技术,以增强机器人在未知环境中的导航能力。
以上教程旨在帮助您快速上手并开始使用Embodied Chain-of-Thought项目。通过遵循这些步骤,您将能够加载和运行ECoT模型,进一步探索其在机器人控制中的应用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考