scale-color-perceptual开源项目教程

scale-color-perceptual开源项目教程

scale-color-perceptual Javascript exports of matplotlib's new default color scales; magma, inferno, plasma and viridis. Works with browserify and D3.js scale-color-perceptual 项目地址: https://gitcode.com/gh_mirrors/sc/scale-color-perceptual

1. 项目介绍

scale-color-perceptual 是一个基于 JavaScript 的开源项目,它实现了 Matplotlib 的新默认颜色尺度,包括 inferno、magma、plasma 和 viridis。这些颜色尺度可以很好地适应人眼的感知,适用于数据可视化等领域。该项目支持 browserify 和 D3.js,可以帮助开发者创建出更为直观和吸引人的数据可视化效果。

2. 项目快速启动

在开始之前,确保你的系统中已经安装了 Node.js 和 npm。

安装

使用 npm 安装 scale-color-perceptual

npm install scale-color-perceptual

使用

以下是一个简单的示例,演示如何使用 scale-color-perceptual 中的 viridis 颜色尺度:

const scale = require('scale-color-perceptual');

const colors = [0, 0.25, 0.5, 0.75, 1].map(t => scale.viridis(t));

console.log(colors); // 输出颜色数组

如果你只需要特定的颜色尺度,你也可以单独导入:

const viridis = require('scale-color-perceptual/viridis');

const color = viridis(0.5);

console.log(color); // 输出中间的颜色值

3. 应用案例和最佳实践

在实际应用中,你可以将 scale-color-perceptual 与 D3.js 结合使用,来创建动态和交互式的数据可视化。

以下是一个使用 D3.js 和 scale-color-perceptual 创建颜色渐变的例子:

const d3 = require('d3');
const plasma = require('scale-color-perceptual/plasma');

const depthScale = d3.scale.linear()
    .domain([-100, 100])
    .clamp(true);

d3.select('body').selectAll('div')
    .data(d3.shuffle(d3.range(-100, 100, 0.1)).map(n => Math.random() * n))
    .enter()
    .append('div')
    .style({
        background: d => plasma(depthScale(d)),
        width: '10px',
        height: '10px',
        float: 'left'
    });

这段代码会在网页中创建一系列色块,每个色块的颜色根据其数值映射到 plasma 颜色尺度上。

4. 典型生态项目

在开源生态中,有许多项目与 scale-color-perceptual 相关,以下是一些典型的项目:

  • D3.js: 一个强大的 JavaScript 库,用于 manipulating documents based on data。
  • Matplotlib: 一个 Python 的 2D 绘图库,它也提供了类似的颜色尺度。
  • Three.js: 一个用于在浏览器中创建和显示 3D 图形的 JavaScript 库,可以与 scale-color-perceptual 结合使用,为 3D 对象着色。

以上就是关于 scale-color-perceptual 的开源项目教程。通过这些内容,开发者可以快速上手并使用这个库来增强他们的数据可视化作品。

scale-color-perceptual Javascript exports of matplotlib's new default color scales; magma, inferno, plasma and viridis. Works with browserify and D3.js scale-color-perceptual 项目地址: https://gitcode.com/gh_mirrors/sc/scale-color-perceptual

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 使用Transformer进行水下图像增强的方法和实现 #### 方法概述 U-shape Transformer 是一种专门设计用于解决水下图像增强问题的深度学习模型。该方法的核心在于利用 Transformer 的自注意力机制来捕捉全局特征,从而改善传统卷积神经网络 (CNN) 在处理复杂场景时可能存在的局限性[^1]。 具体来说,U-shape Transformer 结合了 U-Net 架构的空间结构保留能力和 Transformer 的长距离依赖建模能力。这种组合使得模型能够在保持空间细节的同时,有效提升图像的整体质量,包括颜色校正、对比度调整以及去雾效果等[^2]。 --- #### 技术原理 1. **架构组成** - 模型采用了一种类似于 U-Net 的编码器-解码器结构,其中编码器负责提取输入图像的多尺度特征,而解码器则逐步恢复这些特征并生成最终的增强图像。 - 编码器部分由多个卷积层构成,能够捕获局部纹理信息;解码器部分引入了 Transformer 层,通过自注意力机制进一步优化全局上下文关系。 2. **自注意力机制的作用** 自注意力模块允许模型动态分配权重给不同位置上的像素点,从而使重要的区域得到更多关注。这对于消除水体散射效应尤其有用,因为后者通常会导致目标物体变得模糊不清。 3. **损失函数的设计** 训练过程中采用了多种类型的损失项共同指导参数更新过程: - 像素级 L1 或 MSE 损失:衡量重建图像与真实标签之间的差异; - 感知损失(perceptual loss):借助预训练好的 VGG 网络评估高级语义相似度; - 颜色一致性约束(color consistency constraint):确保输出结果具备自然真实的色调分布。 4. **数据准备** 为了验证所提方案的有效性,研究者构建了一个大规模公开可用的数据集 LSUI(Large-Scale Underwater Images),涵盖了各种光照条件下的实际拍摄样本及其对应的标准版本。这为其他研究人员提供了宝贵的实验资源。 --- #### 实现步骤说明 以下是基于 PyTorch 平台搭建上述系统的简化版代码框架: ```python import torch from torch import nn class SelfAttention(nn.Module): def __init__(self, dim): super(SelfAttention, self).__init__() self.query = nn.Linear(dim, dim) self.key = nn.Linear(dim, dim) self.value = nn.Linear(dim, dim) def forward(self, x): Q = self.query(x) K = self.key(x).transpose(-2,-1) V = self.value(x) attention_scores = torch.matmul(Q,K)/torch.sqrt(torch.tensor(K.size()[-1])) attention_probs = nn.Softmax(dim=-1)(attention_scores) output = torch.matmul(attention_probs,V) return output class EncoderBlock(nn.Module): def __init__(self,in_channels,out_channels,kernel_size=3,stride=1,padding=1): super().__init__() self.conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding) self.bn_layer = nn.BatchNorm2d(out_channels) def forward(self,x): y = self.conv_layer(x) y = self.bn_layer(y) return nn.ReLU()(y) class DecoderBlockWithAttention(nn.Module): def __init__(self,...): # 参数省略... pass def build_model(): encoder_blocks = [] decoder_with_attention_blocks = [] for i in range(num_levels): enc_block = EncoderBlock(...) dec_block = DecoderBlockWithAttention(...) encoder_blocks.append(enc_block) decoder_with_attention_blocks.insert(0,dec_block) model = nn.Sequential(*encoder_blocks,*decoder_with_attention_blocks) return model if __name__ == "__main__": device = 'cuda' if torch.cuda.is_available() else 'cpu' net = build_model().to(device) dummy_input = torch.randn((batch_size,C,H,W)).to(device) enhanced_output = net(dummy_input) ``` 注意以上仅为示意片段,并未完全展示全部逻辑细节,请参照官方仓库链接获取完整实现脚本。 --- #### 总结 综上所述,U-shape Transformer 提供了一条新颖的技术路径,在克服现有算法缺陷方面展现了显著优势。其创新之处不仅体现在理论层面,还落实到了工程实践当中——即开源高质量数据集合配套工具链的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍希望

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值