袋鼯麻麻——智能零售结算平台使用教程

袋鼯麻麻——智能零售结算平台使用教程

ColugoMum 🍰🍎ColugoMum: Intelligent Retail Settlement Platform can accurately locate and identify each commodity, and can return a complete shopping list and the actual total price of commodities that customers should pay. ColugoMum 项目地址: https://gitcode.com/gh_mirrors/co/ColugoMum

1. 项目介绍

袋鼯麻麻是一款基于计算机视觉技术的智能零售结算平台。它利用图像识别和目标检测技术,能够准确识别和定位顾客所购买的商品,自动生成购物清单,并计算顾客应付的实际总价格。该项目基于PaddleClas的PP-ShiTu图像识别系统,通过在检索库中添加新商品的图像,即可识别新商品,无需重新训练模型。

2. 项目快速启动

快速启动本项目需要在您的计算机上配置Python环境,并安装必要的依赖库。

首先,克隆项目到本地:

git clone https://github.com/thomas-yanxin/ColugoMum.git

然后,进入项目目录安装依赖:

cd ColugoMum
pip install -r requirements.txt

对于Windows系统,本项目提供了打包好的demo演示版本。您可以从以下位置下载:

链接:https://pan.baidu.com/s/194ApbJuDJWyV7tv5sCaGsg
提取码:wy7i

下载后,解压文件,运行启动程序.exe即可。

对于Linux系统,进入client文件夹内,执行以下代码即可运行:

python client.py

3. 应用案例和最佳实践

应用案例

  • 在大型线下零售体验店中,顾客将商品放置在指定区域,系统自动识别商品并结算,提高结账效率。
  • 在新零售行业,由于商品更新频繁,系统仅需更新检索库即可识别新品,减少模型训练时间。

最佳实践

  • 确保商品图像清晰,以便系统准确识别。
  • 定期更新检索库,以包含最新商品。
  • 对于相似度高的商品,增加独特标识以提高识别率。

4. 典型生态项目

袋鼯麻麻项目的生态系统中包含了多个关联项目,例如:

  • PaddleClas: 提供了图像识别核心功能开发。
  • QPT: 提供了Windows端.exe打包工具。
  • Tyadmin: 用于构建web端信息管理系统。

通过这些项目的协同工作,可以为零售行业提供完整的智能化解决方案。

ColugoMum 🍰🍎ColugoMum: Intelligent Retail Settlement Platform can accurately locate and identify each commodity, and can return a complete shopping list and the actual total price of commodities that customers should pay. ColugoMum 项目地址: https://gitcode.com/gh_mirrors/co/ColugoMum

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/a1799e63815c 《妙趣横生的算法(C语言实现)》是一本适合不同层次读者的书籍。对于算法初学者来说,它是入门教程;对于学过C语言程序设计的人,是进一步提升的读物;对于有经验的程序设计人员,可作为巩固和提高编程水平、查阅算法实现和数据结构知识的参考;对准备参加相关面试的读者,也能提供帮助。其最大特色是实例丰富、题材新颖有趣、实用性强,将理论融入实践,旨在帮助读者理解算法,提升C语言编程能力,培养编程兴趣,巩固C语言知识。 全书分两部分共10章。第一部分为基础篇,第1章介绍数据结构基础,包括顺序表、链表、栈、队列、树结构、图结构等的定义、操作及实例分析。第2章讲解常用的查找与排序方法,如顺序查找、折半查找、直接插入排序、选择排序等。第3章阐述常用的算法思想,如穷举法、递归与分治、贪心算法、回溯法、数值概率算法等。 第二部分为编程实例解析。第4章是编程基本功,涉及字符类型统计、ASCII码计算、嵌套if-else语句、switch语句译码器、闰年判断、指针变量作参数、矩阵运算、位运算、文件读写、程序运行时间记录、进制转化、特殊图案打印等内容。第5章和第6章为数学趣题,包括舍罕王的失算、最大公约数与最小公倍数、歌德巴赫猜想、三色球问题、百钱买百鸡问题、回文数字判断、填数字游戏求解、新郎和新娘、爱因斯坦的阶梯问题、水仙花数寻找、猴子吃桃问题、兔子产仔问题、质因数分解等。第7章是数据结构趣题,如顺序表就地逆置、动态数列排序、链表归并、约瑟夫环、进制转换器、回文字符串判定、括号匹配等。第8章为数值计算问题,包括递推化梯形法求定积分、低阶定积分求解、迭代法开平方、牛顿法解方程、欧拉方法求解微分方程等。第9章是综合题,如破碎的砝码、24点问题、马踏棋盘、0-1背包问题、八皇后问题求解、文件加密解密系统等。第10章为算法设
内容概要:本文详细探讨了双馈感应发电机(DFIG)风电场的电压协调控制方法,旨在解决DFIG并网导致的电压不稳定问题。文章提出了两种主要的协调控制方案:一是DFIG与静止无功发生器(SVG)的协调控制,优化有功/无功控制模式,优先利用DFIG自身的调节能力,辅以SVG调节;二是DFIG与动态电压恢复器(DVR)的双Q-P协调控制,优化能量交互。通过仿真验证,所提方法能够在0.072秒内恢复99%的额定电压,在故障期间维持电压不低于标称值的85%,抑制12.1%的定子电流突增,并降低DVR容量需求16%,从而有效提升风电场的电压稳定性和运行效率。此外,文章还深入分析了DFIG的基础建模、控制策略实现以及故障仿真结果,并对未来的研究方向提出了建议。 适合人群:电气工程专业研究人员、风电场运维工程师、电力系统稳定性分析师。 使用场景及目标:①理解DFIG风电场电压协调控制的基本原理;②掌握DFIG与SVG、DVR的具体协调控制策略及其实施方法;③评估不同控制方案对风电场电压稳定性和运行效率的影响。 其他说明:本文不仅提供了详细的理论分析和数学模型,还附带了完整的Python代码实现,便于读者进行实验验证和进一步研究。建议读者在学习过程中结合实际案例,通过编程实践加深对控制策略的理解,并关注最新的研究进展和技术应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柯戈喻James

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值