袋鼯麻麻——智能零售结算平台使用教程
1. 项目介绍
袋鼯麻麻是一款基于计算机视觉技术的智能零售结算平台。它利用图像识别和目标检测技术,能够准确识别和定位顾客所购买的商品,自动生成购物清单,并计算顾客应付的实际总价格。该项目基于PaddleClas的PP-ShiTu图像识别系统,通过在检索库中添加新商品的图像,即可识别新商品,无需重新训练模型。
2. 项目快速启动
快速启动本项目需要在您的计算机上配置Python环境,并安装必要的依赖库。
首先,克隆项目到本地:
git clone https://github.com/thomas-yanxin/ColugoMum.git
然后,进入项目目录安装依赖:
cd ColugoMum
pip install -r requirements.txt
对于Windows系统,本项目提供了打包好的demo演示版本。您可以从以下位置下载:
链接:https://pan.baidu.com/s/194ApbJuDJWyV7tv5sCaGsg
提取码:wy7i
下载后,解压文件,运行启动程序.exe
即可。
对于Linux系统,进入client文件夹内,执行以下代码即可运行:
python client.py
3. 应用案例和最佳实践
应用案例
- 在大型线下零售体验店中,顾客将商品放置在指定区域,系统自动识别商品并结算,提高结账效率。
- 在新零售行业,由于商品更新频繁,系统仅需更新检索库即可识别新品,减少模型训练时间。
最佳实践
- 确保商品图像清晰,以便系统准确识别。
- 定期更新检索库,以包含最新商品。
- 对于相似度高的商品,增加独特标识以提高识别率。
4. 典型生态项目
袋鼯麻麻项目的生态系统中包含了多个关联项目,例如:
- PaddleClas: 提供了图像识别核心功能开发。
- QPT: 提供了Windows端.exe打包工具。
- Tyadmin: 用于构建web端信息管理系统。
通过这些项目的协同工作,可以为零售行业提供完整的智能化解决方案。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考