Klavis-AI项目实战:基于Together AI与Klavis MCP构建智能代理系统

Klavis-AI项目实战:基于Together AI与Klavis MCP构建智能代理系统

前言

在当今AI应用开发领域,如何将大语言模型(LLM)与外部工具和服务无缝集成是一个关键挑战。本文将深入探讨如何利用Klavis-AI项目中的MCP(Model Context Protocol)服务器与Together AI的大语言模型构建功能强大的智能代理系统。

技术架构概述

本方案的核心技术栈由两大组件构成:

  1. Together AI:提供高性能的开源大语言模型服务,支持函数调用(function calling)能力
  2. Klavis MCP:作为中间件协议,标准化LLM与外部工具/服务的交互方式

这种架构的优势在于:

  • 解耦模型层与工具层
  • 标准化工具调用接口
  • 支持动态工具发现与调用
  • 简化复杂工作流的构建

环境准备

基础依赖安装

首先需要安装必要的Python包:

%pip install -qU together klavis

API密钥配置

import os
os.environ["TOGETHER_API_KEY"] = "your-together-api-key"
os.environ["KLAVIS_API_KEY"] = "your-klavis-api-key"

核心代理类实现

我们构建了一个Agent类作为智能代理的核心:

class Agent:
    def __init__(self, together_client, klavis_client, mcp_server_url, model):
        self.together = together_client
        self.klavis = klavis_client
        self.mcp_server_url = mcp_server_url
        self.model = model
    
    def process_request(self, user_message):
        # 1. 获取MCP服务器上的可用工具
        mcp_tools = self.klavis.mcp_server.list_tools(...)
        
        # 2. 调用LLM并传入工具定义
        response = self.together.chat.completions.create(
            model=self.model,
            messages=messages,
            tools=mcp_tools.tools
        )
        
        # 3. 处理工具调用
        if assistant_message.tool_calls:
            for tool_call in assistant_message.tool_calls:
                # 通过Klavis SDK执行工具
                tool_result = self.klavis.mcp_server.call_tools(...)
                
        # 4. 获取最终响应
        return final_response

这个代理类实现了完整的工具调用流程:

  1. 动态发现MCP服务器上的可用工具
  2. 将工具定义传递给LLM
  3. 解析LLM的工具调用请求
  4. 通过Klavis SDK执行实际工具调用
  5. 将结果返回给LLM生成最终响应

实战案例一:YouTube视频摘要

初始化YouTube MCP实例

youtube_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.YOUTUBE,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

创建代理并处理请求

agent = Agent(
    together_client=together_client, 
    klavis_client=klavis_client, 
    mcp_server_url=youtube_mcp_instance.server_url,
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo"
)

response = agent.process_request(
    "请分析这个YouTube视频并提供带时间戳的详细摘要: [视频URL]"
)

这个案例展示了如何:

  • 动态获取YouTube视频转录文本
  • 使用LLM生成结构化摘要
  • 整个过程完全自动化

实战案例二:Gmail邮件发送

初始化Gmail MCP实例

gmail_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.GMAIL,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

OAuth授权流程

import webbrowser
webbrowser.open(gmail_mcp_instance.oauth_url)

发送邮件

gmail_agent = Agent(
    together_client=together_client,
    klavis_client=klavis_client,
    mcp_server_url=gmail_mcp_instance.server_url,
    model="Qwen/Qwen2.5-72B-Instruct-Turbo"
)

response = gmail_agent.process_request(
    "请发送邮件给[收件人],主题为[主题],内容为[正文]"
)

这个案例演示了:

  • OAuth认证流程集成
  • 安全地发送电子邮件
  • 自然语言指令转换为具体操作

技术深度解析

MCP协议的核心设计

Model Context Protocol(MCP)定义了三个关键组件:

  1. 工具发现:标准化的工具描述格式
  2. 执行接口:统一的工具调用方式
  3. 结果返回:结构化的响应格式

函数调用流程

  1. 工具注册:MCP服务器向代理注册可用工具
  2. 意图识别:LLM解析用户请求,判断是否需要工具
  3. 参数生成:LLM生成符合工具要求的参数
  4. 执行委托:代理将实际执行委托给MCP服务器
  5. 结果整合:LLM将工具结果整合到最终响应中

扩展应用场景

基于此架构,可以构建更多实用场景:

  1. 智能客服系统:集成CRM、知识库等多系统
  2. 数据分析助手:连接数据库、可视化工具
  3. 自动化工作流:跨平台任务编排
  4. 内容创作平台:多媒体内容生成与发布

最佳实践建议

  1. 模型选择:根据任务复杂度选择合适的LLM
  2. 工具粒度:保持工具功能的单一性
  3. 错误处理:完善工具调用异常处理
  4. 权限控制:严格管理工具访问权限
  5. 日志记录:详细记录工具调用过程

总结

Klavis-AI项目通过MCP协议为LLM与外部系统集成提供了优雅的解决方案。本文展示的Together AI与Klavis的集成方案具有以下优势:

  • 降低集成复杂度:标准化接口简化开发
  • 增强模型能力:突破纯文本交互限制
  • 提高可扩展性:支持动态工具发现
  • 保障安全性:细粒度的访问控制

这种架构为构建下一代AI应用提供了坚实基础,开发者可以专注于业务逻辑而非基础设施集成。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仰书唯Elise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值