Klavis-AI项目实战:基于Together AI与Klavis MCP构建智能代理系统
前言
在当今AI应用开发领域,如何将大语言模型(LLM)与外部工具和服务无缝集成是一个关键挑战。本文将深入探讨如何利用Klavis-AI项目中的MCP(Model Context Protocol)服务器与Together AI的大语言模型构建功能强大的智能代理系统。
技术架构概述
本方案的核心技术栈由两大组件构成:
- Together AI:提供高性能的开源大语言模型服务,支持函数调用(function calling)能力
- Klavis MCP:作为中间件协议,标准化LLM与外部工具/服务的交互方式
这种架构的优势在于:
- 解耦模型层与工具层
- 标准化工具调用接口
- 支持动态工具发现与调用
- 简化复杂工作流的构建
环境准备
基础依赖安装
首先需要安装必要的Python包:
%pip install -qU together klavis
API密钥配置
import os
os.environ["TOGETHER_API_KEY"] = "your-together-api-key"
os.environ["KLAVIS_API_KEY"] = "your-klavis-api-key"
核心代理类实现
我们构建了一个Agent
类作为智能代理的核心:
class Agent:
def __init__(self, together_client, klavis_client, mcp_server_url, model):
self.together = together_client
self.klavis = klavis_client
self.mcp_server_url = mcp_server_url
self.model = model
def process_request(self, user_message):
# 1. 获取MCP服务器上的可用工具
mcp_tools = self.klavis.mcp_server.list_tools(...)
# 2. 调用LLM并传入工具定义
response = self.together.chat.completions.create(
model=self.model,
messages=messages,
tools=mcp_tools.tools
)
# 3. 处理工具调用
if assistant_message.tool_calls:
for tool_call in assistant_message.tool_calls:
# 通过Klavis SDK执行工具
tool_result = self.klavis.mcp_server.call_tools(...)
# 4. 获取最终响应
return final_response
这个代理类实现了完整的工具调用流程:
- 动态发现MCP服务器上的可用工具
- 将工具定义传递给LLM
- 解析LLM的工具调用请求
- 通过Klavis SDK执行实际工具调用
- 将结果返回给LLM生成最终响应
实战案例一:YouTube视频摘要
初始化YouTube MCP实例
youtube_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.YOUTUBE,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
创建代理并处理请求
agent = Agent(
together_client=together_client,
klavis_client=klavis_client,
mcp_server_url=youtube_mcp_instance.server_url,
model="meta-llama/Llama-3.3-70B-Instruct-Turbo"
)
response = agent.process_request(
"请分析这个YouTube视频并提供带时间戳的详细摘要: [视频URL]"
)
这个案例展示了如何:
- 动态获取YouTube视频转录文本
- 使用LLM生成结构化摘要
- 整个过程完全自动化
实战案例二:Gmail邮件发送
初始化Gmail MCP实例
gmail_mcp_instance = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GMAIL,
user_id="1234",
platform_name="Klavis",
connection_type=ConnectionType.STREAMABLE_HTTP,
)
OAuth授权流程
import webbrowser
webbrowser.open(gmail_mcp_instance.oauth_url)
发送邮件
gmail_agent = Agent(
together_client=together_client,
klavis_client=klavis_client,
mcp_server_url=gmail_mcp_instance.server_url,
model="Qwen/Qwen2.5-72B-Instruct-Turbo"
)
response = gmail_agent.process_request(
"请发送邮件给[收件人],主题为[主题],内容为[正文]"
)
这个案例演示了:
- OAuth认证流程集成
- 安全地发送电子邮件
- 自然语言指令转换为具体操作
技术深度解析
MCP协议的核心设计
Model Context Protocol(MCP)定义了三个关键组件:
- 工具发现:标准化的工具描述格式
- 执行接口:统一的工具调用方式
- 结果返回:结构化的响应格式
函数调用流程
- 工具注册:MCP服务器向代理注册可用工具
- 意图识别:LLM解析用户请求,判断是否需要工具
- 参数生成:LLM生成符合工具要求的参数
- 执行委托:代理将实际执行委托给MCP服务器
- 结果整合:LLM将工具结果整合到最终响应中
扩展应用场景
基于此架构,可以构建更多实用场景:
- 智能客服系统:集成CRM、知识库等多系统
- 数据分析助手:连接数据库、可视化工具
- 自动化工作流:跨平台任务编排
- 内容创作平台:多媒体内容生成与发布
最佳实践建议
- 模型选择:根据任务复杂度选择合适的LLM
- 工具粒度:保持工具功能的单一性
- 错误处理:完善工具调用异常处理
- 权限控制:严格管理工具访问权限
- 日志记录:详细记录工具调用过程
总结
Klavis-AI项目通过MCP协议为LLM与外部系统集成提供了优雅的解决方案。本文展示的Together AI与Klavis的集成方案具有以下优势:
- 降低集成复杂度:标准化接口简化开发
- 增强模型能力:突破纯文本交互限制
- 提高可扩展性:支持动态工具发现
- 保障安全性:细粒度的访问控制
这种架构为构建下一代AI应用提供了坚实基础,开发者可以专注于业务逻辑而非基础设施集成。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考