Azure机器学习实验运行管理实战指南

Azure机器学习实验运行管理实战指南

概述

在机器学习项目开发过程中,实验运行(Experiment Runs)的管理是确保模型可追溯性和可重复性的关键环节。本文将深入探讨如何使用Azure机器学习服务有效管理训练运行,包括运行的生命周期管理、属性标记、子运行管理以及运行重现等技术要点。

实验运行基础概念

实验运行是机器学习工作流中的基本执行单元,通常用于训练模型,也可用于数据加载和转换等任务。Azure机器学习服务会自动跟踪所有运行,并支持记录指标和工件。

运行状态生命周期

一个运行通常会经历以下状态变化:

  • 排队中(Queued)
  • 准备中(Preparing)
  • 运行中(Running)
  • 已完成(Completed)
  • 失败(Failed)
  • 已取消(Canceled)

环境准备

在开始管理运行之前,需要确保环境配置正确:

import azureml.core
from azureml.core import Workspace, Experiment, Run
from azureml.core import ScriptRunConfig

# 检查SDK版本
print(azureml.core.VERSION)

# 连接工作区
ws = Workspace.from_config()

# 创建实验
exp = Experiment(workspace=ws, name="explore-runs")

运行生命周期管理

启动和监控运行

最简单的启动运行方式是使用start_logging方法:

# 启动运行并记录指标
with exp.start_logging() as notebook_run:
    notebook_run.log(name="message", value="Hello from run!")
    print("运行状态:", notebook_run.get_status())

提交脚本运行

更常见的场景是提交Python脚本作为独立进程运行:

# 创建运行配置
run_config = ScriptRunConfig(source_directory='.', script='hello.py')

# 提交运行
local_script_run = exp.submit(run_config)

# 等待运行完成
local_script_run.wait_for_completion(show_output=True)

运行状态检查

可以通过多种方式获取运行状态和详细信息:

# 获取基本状态
print(local_script_run.get_status())

# 获取详细信息和日志
details = local_script_run.get_details_with_logs()

# 在门户中查看运行
local_script_run

运行属性与标记管理

属性(Properties)与标记(Tags)的区别

  • 属性:不可变的元数据,适合记录审计信息
  • 标记:可变的键值对,适合灵活分类

添加属性

local_script_run.add_properties({"author":"azureml-user"})
print(local_script_run.get_properties())

添加和更新标记

# 添加标记
local_script_run.tag("quality", "great run")

# 更新标记
local_script_run.tag("quality", "fantastic run")

# 添加简单标记
local_script_run.tag("worth another look")

运行查询技术

基础查询

# 按属性和标记查询
list(exp.get_runs(properties={"author":"azureml-user"}, tags={"quality":"fantastic run"}))

高级查询模式

可以组合多个条件进行复杂查询,例如查找特定作者的所有"值得再看"的运行。

子运行管理

创建子运行

子运行适合组织相关运行,如超参数调优:

with exp.start_logging() as parent_run:
    for i in range(5):
        with parent_run.child_run() as child:
            child.log(name="Iteration", value=i)

查询子运行

children = list(parent_run.get_children())
print(f"找到 {len(children)} 个子运行")

运行控制技术

取消运行

run_config = ScriptRunConfig(source_directory='.', script='long_running.py')
run = exp.submit(run_config)
run.cancel()

标记失败运行

if error_condition:
    run.fail()

运行重现技术

获取运行快照

# 恢复运行快照
local_script_run.restore_snapshot(path="snapshots")

重现运行环境

快照包含运行时的完整代码状态,可用于精确复现实验条件。

最佳实践建议

  1. 属性标记策略:建立统一的属性命名规范,如使用"purpose"、"model-type"等
  2. 运行分类:合理使用子运行组织相关实验
  3. 状态监控:对长时间运行设置超时和自动取消机制
  4. 快照管理:定期清理不必要的快照以节省存储空间

总结

通过Azure机器学习服务的运行管理功能,数据科学家可以有效地跟踪、组织和重现机器学习实验。本文介绍的技术可以帮助团队建立规范的实验管理流程,提高模型开发的可追溯性和协作效率。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤涌双

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值