HuggingFace PEFT 项目快速入门指南:参数高效微调技术解析

HuggingFace PEFT 项目快速入门指南:参数高效微调技术解析

peft 🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning. peft 项目地址: https://gitcode.com/gh_mirrors/pe/peft

什么是PEFT?

PEFT(Parameter-Efficient Fine-Tuning)是HuggingFace推出的参数高效微调技术库,专门用于解决大模型微调过程中的资源消耗问题。在传统微调方法中,我们需要对整个预训练模型的所有参数进行更新,这对于拥有数十亿参数的大模型来说,计算成本和存储需求都变得难以承受。

PEFT通过引入多种参数高效微调方法,仅训练模型中的一小部分参数,就能达到接近全参数微调的效果。这种方法显著降低了计算资源需求,使得在消费级硬件上微调大模型成为可能。

PEFT核心方法

PEFT主要支持以下几种参数高效微调方法:

  1. LoRA(Low-Rank Adaptation):通过低秩分解技术,在原始权重旁添加可训练的低秩矩阵
  2. Prefix Tuning:在输入序列前添加可训练的前缀向量
  3. Prompt Tuning:类似Prefix Tuning,但仅针对输入层进行调整
  4. Adapter:在Transformer层间插入小型神经网络模块

这些方法共同的特点是仅需训练原模型参数量的0.1%-5%,就能获得不错的微调效果。

实战:使用LoRA微调大模型

下面我们以LoRA方法为例,展示如何使用PEFT库微调一个序列到序列的大模型。

1. 配置LoRA参数

首先需要创建LoRA的配置对象,指定关键参数:

from peft import LoraConfig, TaskType

peft_config = LoraConfig(
    task_type=TaskType.SEQ_2_SEQ_LM,  # 指定任务类型为序列到序列语言模型
    inference_mode=False,             # 训练模式
    r=8,                             # 低秩矩阵的秩
    lora_alpha=32,                   # 低秩矩阵的缩放因子
    lora_dropout=0.1                 # LoRA层的dropout率
)

关键参数说明:

  • r:决定了低秩矩阵的大小,值越小训练参数越少,但可能影响模型性能
  • lora_alpha:控制LoRA权重对原始权重的调整强度
  • lora_dropout:防止过拟合的正则化手段

2. 加载基础模型并应用PEFT

from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_model

# 加载预训练的大模型
model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/mt0-large")

# 应用PEFT配置
model = get_peft_model(model, peft_config)

# 查看可训练参数占比
model.print_trainable_parameters()

执行后会输出类似以下内容:

trainable params: 2,359,296 || all params: 1,231,940,608 || trainable%: 0.19

这表明我们仅需训练原模型0.19%的参数,大大降低了计算需求。

3. 训练模型

PEFT模型可以像普通Transformer模型一样使用各种训练方式。以下是使用Trainer API的示例:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
    output_dir="./lora_output",
    learning_rate=1e-3,
    per_device_train_batch_size=32,
    num_train_epochs=2,
    evaluation_strategy="epoch"
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    tokenizer=tokenizer
)

trainer.train()

4. 保存与共享模型

训练完成后,PEFT模型可以高效地保存:

# 本地保存
model.save_pretrained("lora_output")

# 上传到模型中心
model.push_to_hub("your-username/mt0-large-lora")

PEFT模型仅保存适配器权重,通常只有几MB大小,而完整的原始模型可能有几百MB甚至几GB。

推理:使用PEFT模型

加载PEFT模型进行推理非常简单:

from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

model = AutoPeftModelForCausalLM.from_pretrained("your-username/opt-350m-lora")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

inputs = tokenizer("今天天气真好,", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0]))

为什么选择PEFT?

  1. 资源效率:大幅减少训练所需的GPU内存和计算资源
  2. 模块化设计:适配器权重与基础模型分离,便于管理和部署
  3. 知识保留:基础模型的预训练知识几乎完全保留
  4. 迁移便捷:小体积的适配器文件便于共享和迁移学习

进阶探索

掌握了LoRA方法后,可以尝试PEFT支持的其他微调方法:

  • 尝试Prompt Tuning进行更轻量级的微调
  • 探索Adapter方法在不同层间插入小型网络
  • 结合多种PEFT方法进行混合微调

PEFT技术正在快速发展,未来会有更多高效的微调方法加入。对于希望在大模型时代保持竞争力的开发者来说,掌握这些参数高效微调技术将成为必备技能。

peft 🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning. peft 项目地址: https://gitcode.com/gh_mirrors/pe/peft

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

费然杨Bernadette

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值