使用Guardrails AI生成结构化数据的技术指南
前言
在现代AI应用开发中,从大型语言模型(LLM)获取结构化输出是一个常见需求。Guardrails AI为解决这一问题提供了优雅的解决方案,它能够确保LLM输出符合预定义的结构和类型要求。本文将详细介绍如何使用Guardrails AI生成结构化数据,包括简单类型、嵌套类型和列表类型的数据结构。
Guardrails AI结构化数据生成基础
Guardrails AI提供了两种主要方式来定义和生成结构化数据:
- Pydantic模型方式:利用Python类型系统定义数据结构
- RAIL标记语言方式:使用XML风格的标记语言定义数据结构
两种方式各有优势,Pydantic更适合Python开发者,而RAIL则提供了更灵活的跨语言支持。
简单类型数据结构生成
使用Pydantic模型
from pydantic import BaseModel
class Person(BaseModel):
name: str # 字符串类型姓名
age: int # 整型年龄
is_employed: bool # 布尔型就业状态
创建Guard对象并生成数据:
from guardrails import Guard
# 创建基于Pydantic模型的Guard对象
guard = Guard.for_pydantic(Person)
# 调用LLM生成结构化数据
import openai
res = guard(
openai.chat.completion.create,
model="gpt-3.5-turbo",
)
使用RAIL标记语言
<rail version="0.1">
<output>
<string name="name" description="人员姓名"/>
<integer name="age" description="人员年龄"/>
<boolean name="is_employed" description="是否在职"/>
</output>
</rail>
对应的Python代码:
from guardrails import Guard
rail_spec = """
<rail version="0.1">
<output>
<string name="name"/>
<integer name="age"/>
<boolean name="is_employed"/>
</output>
</rail>
"""
guard = Guard.for_rail_string(rail_spec)
嵌套类型数据结构生成
处理复杂数据结构时,我们经常需要嵌套对象。
Pydantic实现方式
from pydantic import BaseModel
class Address(BaseModel):
street: str # 街道地址
city: str # 城市
zip: str # 邮编
class Person(BaseModel):
name: str
age: int
is_employed: bool
address: Address # 嵌套地址对象
RAIL实现方式
<rail version="0.1">
<output>
<string name="name"/>
<integer name="age"/>
<boolean name="is_employed"/>
<object name="address">
<string name="street"/>
<string name="city"/>
<string name="zip"/>
</object>
</output>
</rail>
列表类型数据结构生成
当需要处理多个同类对象时,列表结构非常有用。
Pydantic实现方式
from pydantic import BaseModel
from typing import List
class Person(BaseModel):
name: str
age: int
is_employed: bool
# 人员列表类型
People = List[Person]
RAIL实现方式
<rail version="0.1">
<output type="list">
<object>
<string name="name"/>
<integer name="age"/>
<boolean name="is_employed"/>
</object>
</output>
</rail>
最佳实践建议
- 类型明确:始终为每个字段指定明确的类型,避免歧义
- 描述性命名:使用有意义的字段名称,便于理解和维护
- 渐进式复杂化:从简单结构开始,逐步增加复杂性
- 错误处理:考虑添加验证逻辑处理可能的类型不匹配情况
- 文档注释:为每个字段添加描述,帮助LLM理解预期内容
总结
Guardrails AI为LLM输出结构化数据提供了强大而灵活的工具。无论是简单的键值对、嵌套对象还是对象列表,都可以通过Pydantic模型或RAIL标记语言轻松定义。开发者可以根据项目需求和个人偏好选择合适的方式,确保从LLM获取的数据始终符合预期结构和类型要求。
通过本指南介绍的方法,开发者可以构建更加健壮的AI应用,减少后期数据处理的工作量,提高开发效率。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考