使用Guardrails AI生成结构化数据的技术指南

使用Guardrails AI生成结构化数据的技术指南

guardrails Adding guardrails to large language models. guardrails 项目地址: https://gitcode.com/gh_mirrors/gu/guardrails

前言

在现代AI应用开发中,从大型语言模型(LLM)获取结构化输出是一个常见需求。Guardrails AI为解决这一问题提供了优雅的解决方案,它能够确保LLM输出符合预定义的结构和类型要求。本文将详细介绍如何使用Guardrails AI生成结构化数据,包括简单类型、嵌套类型和列表类型的数据结构。

Guardrails AI结构化数据生成基础

Guardrails AI提供了两种主要方式来定义和生成结构化数据:

  1. Pydantic模型方式:利用Python类型系统定义数据结构
  2. RAIL标记语言方式:使用XML风格的标记语言定义数据结构

两种方式各有优势,Pydantic更适合Python开发者,而RAIL则提供了更灵活的跨语言支持。

简单类型数据结构生成

使用Pydantic模型

from pydantic import BaseModel

class Person(BaseModel):
    name: str  # 字符串类型姓名
    age: int   # 整型年龄
    is_employed: bool  # 布尔型就业状态

创建Guard对象并生成数据:

from guardrails import Guard

# 创建基于Pydantic模型的Guard对象
guard = Guard.for_pydantic(Person)

# 调用LLM生成结构化数据
import openai
res = guard(
    openai.chat.completion.create,
    model="gpt-3.5-turbo",
)

使用RAIL标记语言

<rail version="0.1">
  <output>
    <string name="name" description="人员姓名"/>
    <integer name="age" description="人员年龄"/>
    <boolean name="is_employed" description="是否在职"/>
  </output>
</rail>

对应的Python代码:

from guardrails import Guard

rail_spec = """
<rail version="0.1">
  <output>
    <string name="name"/>
    <integer name="age"/>
    <boolean name="is_employed"/>
  </output>
</rail>
"""

guard = Guard.for_rail_string(rail_spec)

嵌套类型数据结构生成

处理复杂数据结构时,我们经常需要嵌套对象。

Pydantic实现方式

from pydantic import BaseModel

class Address(BaseModel):
    street: str  # 街道地址
    city: str    # 城市
    zip: str     # 邮编

class Person(BaseModel):
    name: str
    age: int
    is_employed: bool
    address: Address  # 嵌套地址对象

RAIL实现方式

<rail version="0.1">
  <output>
    <string name="name"/>
    <integer name="age"/>
    <boolean name="is_employed"/>
    <object name="address">
      <string name="street"/>
      <string name="city"/>
      <string name="zip"/>
    </object>
  </output>
</rail>

列表类型数据结构生成

当需要处理多个同类对象时,列表结构非常有用。

Pydantic实现方式

from pydantic import BaseModel
from typing import List

class Person(BaseModel):
    name: str
    age: int
    is_employed: bool

# 人员列表类型
People = List[Person]

RAIL实现方式

<rail version="0.1">
  <output type="list">
    <object>
      <string name="name"/>
      <integer name="age"/>
      <boolean name="is_employed"/>
    </object>
  </output>
</rail>

最佳实践建议

  1. 类型明确:始终为每个字段指定明确的类型,避免歧义
  2. 描述性命名:使用有意义的字段名称,便于理解和维护
  3. 渐进式复杂化:从简单结构开始,逐步增加复杂性
  4. 错误处理:考虑添加验证逻辑处理可能的类型不匹配情况
  5. 文档注释:为每个字段添加描述,帮助LLM理解预期内容

总结

Guardrails AI为LLM输出结构化数据提供了强大而灵活的工具。无论是简单的键值对、嵌套对象还是对象列表,都可以通过Pydantic模型或RAIL标记语言轻松定义。开发者可以根据项目需求和个人偏好选择合适的方式,确保从LLM获取的数据始终符合预期结构和类型要求。

通过本指南介绍的方法,开发者可以构建更加健壮的AI应用,减少后期数据处理的工作量,提高开发效率。

guardrails Adding guardrails to large language models. guardrails 项目地址: https://gitcode.com/gh_mirrors/gu/guardrails

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

费然杨Bernadette

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值