AgentUniverse框架快速入门指南

AgentUniverse框架快速入门指南

项目地址:https://gitcode.com/gh_mirrors/ag/agentUniverse

1. 项目目录结构及介绍

在AgentUniverse项目中,您通常会发现以下主要目录结构:

.
├── README.md      # 项目简介和说明文件
├── src             # 源代码主目录
│   ├── app.py       # 应用主入口文件
│   ├── config.py    # 配置文件
│   └── agents       # 代理(agent)代码存放处
│       ├── __init__.py
│       └── example_agent.py  # 示例代理代码
├── requirements.txt  # 依赖项列表
└── docker-compose.yml  # Docker容器化配置文件
  • src: 存放所有源代码的地方。

    • app.py: 项目启动点,定义应用的基本设置和代理协作模式。
    • config.py: 包含应用程序运行所需的配置参数。
    • agents: 代理代码所在的目录,每个代理负责特定的任务或领域。
  • requirements.txt: 列出项目所需的所有Python库,用于安装依赖。

  • docker-compose.yml: 使用Docker进行多服务部署的配置文件。

2. 项目的启动文件介绍

src/app.py 是项目的主要启动文件。在这个文件里,你会看到如何初始化代理,以及如何设置和执行多代理协作模式。一个简单的示例可能包括如下内容:

from agentuniverse import create_app, run_agents
import config

app = create_app(config)
run_agents(app, ['example_agent'])

这里的create_app函数使用配置对象初始化框架,而run_agents则启动指定的代理(如'example_agent')。

3. 项目的配置文件介绍

src/config.py 文件用于存储项目运行时的配置选项。例如,它可能包含代理之间的通信参数、数据库连接字符串或其他环境变量。一个基本配置文件可能会包含以下内容:

class Config:
    AGENT_COMMUNICATION_TYPE = 'websocket'
    DATABASE_URL = 'postgresql://user:password@localhost/dbname'
    MULTI_AGENT_MODE = 'round_robin'  # 可以是'dependency_graph', 'round_robin', 等等

可以根据项目需求自定义配置类,添加更多的配置项。

以上就是AgentUniverse框架的基本目录结构、启动文件和配置文件介绍。要深入了解并使用这个框架,建议阅读项目官方文档和示例项目。

agentUniverse agentUniverse is a LLM multi-agent framework that allows developers to easily build multi-agent applications. Furthermore, through the community, they can exchange and share practices of patterns across different domains. agentUniverse 项目地址: https://gitcode.com/gh_mirrors/ag/agentUniverse

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

<think>好的,我现在需要帮助用户了解如何使用AgentUniverse以及相关的技术文档。首先,我得仔细看看用户的问题和提供的引用内容。用户提到了几个引用,其中引用[1]到[3]是关于安装、项目地址和文档的链接,引用[4]和[5]则涉及Agent类和多Agent协同的技术细节。 首先,用户想知道AgentUniverse的使用说明和技术文档。根据引用[1],安装是通过pip install agentUniverse,所以第一步应该告诉用户如何安装。然后引用[3]提供了项目地址和文档地址,我需要确保用户能访问这些链接。同时,引用[4]解释了Agent类的作用,这可能涉及到基本用法的示例,所以可能需要提供一个简单的代码示例来说明如何使用Agent。 接下来,用户可能对多Agent协同感兴趣,因为引用[5]提到从单Agent到多Agent的协同是核心技术问题。因此,我应该分步骤解释如何开始使用,包括安装、基本用法、进阶功能以及如何查阅文档和社区支持。 需要注意的是,回答必须结构清晰,使用中文,并且正确应用LaTeX格式。不过,在这个问题中可能用到的数学公式较少,但如果有技术术语或需要强调的部分,可能需要使用行内公式,比如版本号或者变量名,例如版本$v1.0.0$。但根据提供的引用内容,可能数学公式不太相关,所以重点放在代码块和链接上。 另外,用户要求生成相关问题,我需要根据回答内容提出几个相关问题,比如安装问题、配置方法、多Agent应用场景等。 最后,确保所有的引用标识正确对应,例如引用[1]对应安装命令,引用[3]对应文档链接等。同时检查是否有遗漏的信息,比如社区支持或贡献方式,这可能帮助用户进一步参与项目。 总结步骤: 1. 安装步骤,引用[1] 2. 文档链接,引用[3] 3. 基本用法示例,引用[4] 4. 多Agent协同,引用[5] 5. 社区和贡献,引用[2] 6. 生成相关问题 需要确保每个部分自然衔接,并且引用标识正确放置在相关段落的末尾。同时,代码块需要正确格式化,使用Python语法高亮。</think>### AgentUniverse 使用说明与技术文档 #### 1. **安装与快速开始** AgentUniverse 可通过 `pip` 快速安装: ```bash pip install agentUniverse ``` 安装完成后,即可通过其提供的接口构建智能体应用[^1]。 #### 2. **文档与资源** - **项目地址**:所有代码与示例均托管在 GitHub:[AgentUniverse 仓库](https://github.com/antgroup/agentUniverse)[^3]。 - **技术文档**:详细文档位于仓库的 `README_zh.md` 文件中,涵盖从基础配置到多智能体协同的全面指南。 #### 3. **基础用法示例** AgentUniverse 的核心是 `Agent` 类,支持工具调用与大语言模型(LLM)集成。以下是一个简单示例: ```python from agentuniverse import Agent # 初始化 Agent agent = Agent() # 输入消息列表,生成流式响应 messages = [{"role": "user", "content": "你好,介绍一下多智能体协同?"}] response_generator = agent.run(messages) # 输出响应结果 for chunk in response_generator: print(chunk) ``` 此代码展示了如何通过 `Agent` 类处理用户输入并生成流式输出[^4]。 #### 4. **进阶功能:多智能体协同** AgentUniverse 支持多智能体分工协作,适用于复杂任务场景。例如,在客服系统中,可通过路由智能体、专业问答智能体和总结智能体的协作提升效率[^5]。配置时需定义各智能体的职责与交互协议。 #### 5. **社区与支持** - **问题反馈**:提交至 [GitHub Issues](https://github.com/antgroup/agentUniverse/issues)[^2]。 - **贡献指南**:欢迎通过 Pull Request 参与项目,具体规则参考仓库文档。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盛炯典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值