开源项目机器学习算法资料使用说明
1. 项目的目录结构及介绍
本项目包含了一系列的机器学习算法资料,包括但不限于线性回归、逻辑回归、决策树、随机森林等算法的实践和理论知识。以下是项目的目录结构:
Machine-Learning-Algorithms-Materials/
├── 1-Simple Linear Regression.pdf
├── 2-Ridge And Lasso Regression.pdf
├── 3-Logistic Regression.pdf
├── 4-Naive Bayes.pdf
├── Decision Tree Practical Implementation.ipynb
├── Decision Tree Prepruning Practical Implementation.ipynb
├── Deicsion Tree Regression And Cross Validation.ipynb
├── LICENSE
├── Linear Regression Practical Implementation-Hindi.ipynb
├── Logistic Regression Practical Implementation.ipynb
├── Postpruning and prepruning decision tree.pdf
├── README.md
├── Randomforestregressionandclassification.pdf
├── Ridge And Lasso Practical.ipynb
├── SVR Algorithms.pdf
├── decision tree.pdf
├── mse,mae,rmse.pdf
├── r2adjustedr2.pdf
└── train,test and validation.pdf
*.pdf
文件:包含机器学习算法的理论知识介绍。*.ipynb
文件:是 Jupyter Notebook 文件,包含具体的机器学习算法实践代码和结果展示。README.md
:本项目说明文件,提供项目的基本信息和如何使用本项目。
2. 项目的启动文件介绍
本项目没有特定的启动文件。用户可以直接打开任何一个 .ipynb
文件开始学习相应的机器学习算法实践。例如,如果你想学习决策树的实践,可以打开 Decision Tree Practical Implementation.ipynb
文件。
3. 项目的配置文件介绍
本项目没有配置文件。所有必要的代码和数据集都直接包含在 Jupyter Notebook 文件中。用户需要确保其系统中已安装 Jupyter Notebook,以及所有在 Notebook 中使用的 Python 库,如 numpy
, pandas
, matplotlib
等。
用户可以直接在 Jupyter Notebook 环境中运行 .ipynb
文件,开始学习不同机器学习算法的实践。在运行 Notebook 之前,请确保已安装所有必要的 Python 包。如果遇到任何依赖问题,可以参照每个 Notebook 中的要求安装所需的包。