开源项目机器学习算法资料使用说明

开源项目机器学习算法资料使用说明

Machine-Learning-Algorithms-Materials Machine-Learning-Algorithms-Materials 项目地址: https://gitcode.com/gh_mirrors/ma/Machine-Learning-Algorithms-Materials

1. 项目的目录结构及介绍

本项目包含了一系列的机器学习算法资料,包括但不限于线性回归、逻辑回归、决策树、随机森林等算法的实践和理论知识。以下是项目的目录结构:

Machine-Learning-Algorithms-Materials/
├── 1-Simple Linear Regression.pdf
├── 2-Ridge And Lasso Regression.pdf
├── 3-Logistic Regression.pdf
├── 4-Naive Bayes.pdf
├── Decision Tree Practical Implementation.ipynb
├── Decision Tree Prepruning Practical Implementation.ipynb
├── Deicsion Tree Regression And Cross Validation.ipynb
├── LICENSE
├── Linear Regression Practical Implementation-Hindi.ipynb
├── Logistic Regression Practical Implementation.ipynb
├── Postpruning and prepruning decision tree.pdf
├── README.md
├── Randomforestregressionandclassification.pdf
├── Ridge And Lasso Practical.ipynb
├── SVR Algorithms.pdf
├── decision tree.pdf
├── mse,mae,rmse.pdf
├── r2adjustedr2.pdf
└── train,test and validation.pdf
  • *.pdf 文件:包含机器学习算法的理论知识介绍。
  • *.ipynb 文件:是 Jupyter Notebook 文件,包含具体的机器学习算法实践代码和结果展示。
  • README.md:本项目说明文件,提供项目的基本信息和如何使用本项目。

2. 项目的启动文件介绍

本项目没有特定的启动文件。用户可以直接打开任何一个 .ipynb 文件开始学习相应的机器学习算法实践。例如,如果你想学习决策树的实践,可以打开 Decision Tree Practical Implementation.ipynb 文件。

3. 项目的配置文件介绍

本项目没有配置文件。所有必要的代码和数据集都直接包含在 Jupyter Notebook 文件中。用户需要确保其系统中已安装 Jupyter Notebook,以及所有在 Notebook 中使用的 Python 库,如 numpy, pandas, matplotlib 等。

用户可以直接在 Jupyter Notebook 环境中运行 .ipynb 文件,开始学习不同机器学习算法的实践。在运行 Notebook 之前,请确保已安装所有必要的 Python 包。如果遇到任何依赖问题,可以参照每个 Notebook 中的要求安装所需的包。

Machine-Learning-Algorithms-Materials Machine-Learning-Algorithms-Materials 项目地址: https://gitcode.com/gh_mirrors/ma/Machine-Learning-Algorithms-Materials

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯天阔Kirstyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值