Libra项目最佳实践教程

Libra项目最佳实践教程

Libra Simple PyTorch implementation of "Libra: Building Decoupled Vision System on Large Language Models" (accepted by ICML 2024) Libra 项目地址: https://gitcode.com/gh_mirrors/libra3/Libra

1. 项目介绍

Libra是一个基于大型语言模型的解耦视觉系统构建项目。它通过结合大型语言模型和视觉信息处理技术,旨在提高视觉任务的处理效率和灵活性。该项目已经被ICML 2024接受,并在GitHub上开源,提供了PyTorch实现的简单示例,包括预训练、微调和推理等。

2. 项目快速启动

环境准备

首先,确保安装了以下依赖项:

pip install -r requirements.txt

数据准备

项目支持webdatasets、COCO和LLaVA-instruction格式的数据。数据文件夹结构如下:

DATASETS/
├── laion/
│   ├── 00000.tar
│   ├── 00001.tar
│   ├── ...
│   └── 07776.tar
├── instruction/
│   ├── llava_v1_5_mix665k.json
│   ├── data/
│   |   ├── coco/
│   |   ├── gqa/
│   |   ├── ...
│   └── └── vg
└── coco/
├── annotations/
│   ├── coco_karpathy_train.json
│   └── ...
├── train2017/
├── val2017/
├── train2014/
└── ...

预训练模型准备

如果要从头开始训练Libra,需要进行以下准备:

  • 准备Huggingface版本的llama-2-7b-chat-hf模型,并重命名文件夹为llama-2-7b-chat-hf-libra
  • 将视觉标记器权重合并到预训练的llama路径中。
  • 下载预训练的CLIP模型并合并到预训练模型路径中。

启动预训练

使用以下命令启动预训练:

torchrun --nnodes=5 --nproc_per_node=8 train.py --cfg-path libra/configs/libra_pretrain.yaml

3. 应用案例和最佳实践

模型推理

项目提供了一个简单的Jupyter演示,可以用于模型推理。

微调指令

项目支持LLaVA指令格式的数据微调。使用以下命令进行微调:

torchrun --nnodes=1 --nproc_per_node=8 train.py --cfg-path libra/configs/libra_instruction.yaml

模型权重下载

项目提供了预训练的基础模型(Libra-Base)和微调后的模型(Libra-Chat)。

4. 典型生态项目

Libra项目是基于以下开源项目构建的:

  • LAVIS
  • Huggingface Trainer
  • deepspeed

这些项目为Libra提供了底层支持和工具,使得Libra能够更加高效地进行开发和部署。

以上就是Libra项目最佳实践教程,希望能够帮助开发者快速上手并利用Libra项目构建解耦视觉系统。

Libra Simple PyTorch implementation of "Libra: Building Decoupled Vision System on Large Language Models" (accepted by ICML 2024) Libra 项目地址: https://gitcode.com/gh_mirrors/libra3/Libra

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芮瀚焕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值