Libra项目最佳实践教程
1. 项目介绍
Libra是一个基于大型语言模型的解耦视觉系统构建项目。它通过结合大型语言模型和视觉信息处理技术,旨在提高视觉任务的处理效率和灵活性。该项目已经被ICML 2024接受,并在GitHub上开源,提供了PyTorch实现的简单示例,包括预训练、微调和推理等。
2. 项目快速启动
环境准备
首先,确保安装了以下依赖项:
pip install -r requirements.txt
数据准备
项目支持webdatasets、COCO和LLaVA-instruction格式的数据。数据文件夹结构如下:
DATASETS/
├── laion/
│ ├── 00000.tar
│ ├── 00001.tar
│ ├── ...
│ └── 07776.tar
├── instruction/
│ ├── llava_v1_5_mix665k.json
│ ├── data/
│ | ├── coco/
│ | ├── gqa/
│ | ├── ...
│ └── └── vg
└── coco/
├── annotations/
│ ├── coco_karpathy_train.json
│ └── ...
├── train2017/
├── val2017/
├── train2014/
└── ...
预训练模型准备
如果要从头开始训练Libra,需要进行以下准备:
- 准备Huggingface版本的
llama-2-7b-chat-hf
模型,并重命名文件夹为llama-2-7b-chat-hf-libra
。 - 将视觉标记器权重合并到预训练的llama路径中。
- 下载预训练的CLIP模型并合并到预训练模型路径中。
启动预训练
使用以下命令启动预训练:
torchrun --nnodes=5 --nproc_per_node=8 train.py --cfg-path libra/configs/libra_pretrain.yaml
3. 应用案例和最佳实践
模型推理
项目提供了一个简单的Jupyter演示,可以用于模型推理。
微调指令
项目支持LLaVA指令格式的数据微调。使用以下命令进行微调:
torchrun --nnodes=1 --nproc_per_node=8 train.py --cfg-path libra/configs/libra_instruction.yaml
模型权重下载
项目提供了预训练的基础模型(Libra-Base)和微调后的模型(Libra-Chat)。
4. 典型生态项目
Libra项目是基于以下开源项目构建的:
- LAVIS
- Huggingface Trainer
- deepspeed
这些项目为Libra提供了底层支持和工具,使得Libra能够更加高效地进行开发和部署。
以上就是Libra项目最佳实践教程,希望能够帮助开发者快速上手并利用Libra项目构建解耦视觉系统。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考