Bokeh项目中的分类数据可视化技术详解

Bokeh项目中的分类数据可视化技术详解

bokeh bokeh/bokeh: 是一个用于创建交互式图形和数据的 Python 库。适合用于数据可视化、数据分析和呈现,以及创建动态的 Web 应用。特点是提供了一种简洁、直观的 API 来描述和处理数据,并生成交互式的可视化效果。 bokeh 项目地址: https://gitcode.com/gh_mirrors/bo/bokeh

分类数据概述

在数据可视化领域,分类数据(Categorical Data)是指可以被划分为不同组别或类别的数据,这些数据可能具有也可能不具有自然顺序或数值。Bokeh作为强大的Python可视化库,提供了多种处理和分析分类数据的方法。

分类数据特点

  • 代表标签和分组而非连续数值
  • 常见示例包括:国家名称、产品类别、颜色等
  • 通常与连续数据共同存在于数据集中

单分类变量可视化

带抖动效果的分类散点图

当数据集中每个类别包含多个值时,标准散点图会导致数据点重叠严重。Bokeh的jitter函数通过为每个点添加随机偏移量来解决这个问题。

应用场景

  • 一周内不同日期的多次测量值
  • 用户行为在不同时间段的分布

技术要点

  • 使用jitter变换避免点重叠
  • 可调整抖动幅度以获得最佳可视化效果

分类序列与偏移量

对于每个类别包含有序数据序列的情况,可以使用分类偏移来精确定位图形元素。

实现方法

  1. 在类别名称后添加数值偏移量,如["Jan", 0.2]
  2. 对于多级分类,在列表末尾添加偏移值,如["West", "Sales", -0.2]

示例代码

fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
offsets = [-0.5, -0.2, 0.0, 0.3, 0.1, 0.3]
x = list(zip(fruits, offsets))
p.vbar(x=x, top=[5, 3, 4, 2, 4, 6], width=0.8)

斜率图(Slopegraphs)

斜率图是展示两个或多个数据点间相对变化的有效工具。

特点

  • 使用点表示单个测量值
  • 用线段连接配对点
  • 线段斜率反映变化幅度和方向

适用场景

  • 比较类别间的差异
  • 展示类别内变量随时间的变化

多分类变量可视化

分类热力图

当数据值与类别对相关联时,可以使用分类热力图进行可视化。

构建要素

  • 两个分类轴(X轴和Y轴)
  • 矩形颜色表示对应类别对的值
  • 使用linear_cmap实现连续变量的颜色映射
  • 添加颜色条(color bar)作为图例

典型应用

  • 按年和月展示失业率
  • 产品在不同地区和时间段的销售表现

相关图(Correlograms)

当每个类别包含多个(3-4个以上)定量变量时,相关图能有效展示变量间的关联程度。

设计要点

  • 使用彩色圆圈表示相关系数
  • 圆圈大小对应相关系数的绝对值
  • 低相关值被抑制,高相关值突出显示
  • 同样使用颜色映射和颜色条增强可读性

高级技巧与最佳实践

  1. 颜色映射选择:根据数据类型(连续/离散)选择合适的颜色映射方案
  2. 交互增强:结合Bokeh的交互功能,如悬停工具提示
  3. 布局优化:对于复杂图表,注意调整边距和间距
  4. 性能考虑:大数据集时考虑采样或聚合策略

通过掌握这些分类数据可视化技术,您可以更有效地从复杂数据集中提取洞察,创建信息丰富且美观的可视化作品。Bokeh提供的这些工具使分类数据的分析和展示变得更加直观和高效。

bokeh bokeh/bokeh: 是一个用于创建交互式图形和数据的 Python 库。适合用于数据可视化、数据分析和呈现,以及创建动态的 Web 应用。特点是提供了一种简洁、直观的 API 来描述和处理数据,并生成交互式的可视化效果。 bokeh 项目地址: https://gitcode.com/gh_mirrors/bo/bokeh

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/fe886b97b3d0 “CSDN-中文IT社区-600万.rar” 这个文件名称表明它与CSDN(中国软件开发者网络)有关,且包含600万份资源。CSDN作为中国最大的IT技术交流平台,覆盖了编程语言、软件开发、网络安全、大数据、云计算等多个领域的知识和资讯。该压缩包可能包含用户数据、文章、讨论话题或学习资料等。其内容可能极为丰富,涵盖大量用户生成内容,如博客文章、论坛帖子、问答记录等,对于研究IT行业趋势、开发者行为和技术热点等具有重要价值。尽管目前没有具体内容,但推测可能涉及“编程”“开发”“社区数据”“技术文章”“学习资源”等标签。 从文件名称来看,压缩包的内容可能包括以下几类:一是用户数据,如注册信息、活动记录、帖子和评论等,可用于分析用户行为和社区活跃度;二是技术文章和博客,涵盖众多技术专家分享的教程、解决方案和经验;三是源代码和项目,供其他开发者学习参考;四是论坛讨论,反映开发者关注的技术问题和热点;五是资源下载,如教程素材、工具软件、开发库等;六是会议和活动记录,包括报告、演讲稿和视频;七是学习路径和课程,帮助开发者提升技能;八是排行榜和奖项,体现社区的认可度和影响力。 “CSDN-中文IT社区-600万.rar” 压缩包可能是一个极具价值的IT知识宝库,涵盖从基础编程到高级技术实践的广泛主题,反映了中国IT社区的发展动态。对于IT从业者、研究人员以及编程爱好者来说,它是一个极具价值的学习和研究资源,能够帮助人们洞察开发者需求、技术趋势和社区变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祝珏如

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值