Dinky项目数据源管理功能详解

Dinky项目数据源管理功能详解

dinky Dinky is an out-of-the-box, one-stop, real-time computing platform dedicated to the construction and practice of Unified Streaming & Batch and Unified Data Lake & Data Warehouse. Based on Apache Flink, Dinky provides the ability to connect many big data frameworks including OLAP and Data Lake. dinky 项目地址: https://gitcode.com/gh_mirrors/di/dinky

概述

数据源管理是Dinky项目中的核心功能模块之一,它为数据开发人员提供了统一的数据源配置和管理平台。本文将全面介绍Dinky数据源管理的各项功能和使用方法,帮助用户高效地配置和使用各类数据源。

数据源管理功能简介

Dinky的数据源管理模块主要提供以下核心功能:

  1. 数据源创建与配置:支持多种主流数据库的连接配置
  2. 元数据查看:直观展示数据库表结构和数据
  3. Flink DDL自动生成:简化FlinkSQL开发流程
  4. 安全机制:引用检查和敏感信息保护

目前支持的数据源类型包括:MySQL、Oracle、PostgreSQL、SQLServer、Phoenix、ClickHouse、Doris、StartRocks、Presto、Hive等主流数据库。

数据源创建详解

创建步骤

  1. 进入注册中心 > 数据源管理
  2. 点击"新建"按钮
  3. 填写数据源配置信息
  4. 测试连接
  5. 保存配置

关键配置参数说明

| 参数名称 | 说明 | 注意事项 | |---------|------|---------| | 名称 | 数据源唯一标识 | 建议使用英文全小写,不超过20字符 | | 分组类型 | 数据源分类 | 可选来源、数仓、应用等分类 | | 数据源类型 | 数据库类型 | 根据实际数据库选择对应类型 | | URL | 数据库连接地址 | 输入时可触发常用URL示例 | | 用户名/密码 | 数据库认证信息 | 确保有足够权限 | | Flink连接配置 | 全局连接参数 | 可用于敏感信息保护 | | Flink连接模板 | DDL生成模板 | 支持动态变量 |

Flink集成功能

Flink连接配置

这一功能主要用于:

  1. 敏感信息保护:避免在SQL中直接暴露密码等敏感信息
  2. 全局变量复用:可在多个作业中复用相同配置

使用方法:在FlinkSQL中使用${数据源名称}引用配置,例如${MySQL}

Flink连接模板

连接模板用于自动生成FlinkSQL DDL语句,主要特点:

  1. 动态变量支持:使用#{schemaName}#{tableName}动态获取库表名
  2. 参数预设:预先配置常用连接参数,减少重复工作
模板配置示例
'connector' = 'mysql-cdc'
,'hostname' = 'localhost'
,'port' = '3306'
,'username' = 'root'
,'password' = '123456'
,'database-name' = '#{schemaName}'
,'table-name' = '#{tableName}'

元数据管理功能

Dinky提供了直观的元数据查看界面:

  1. 表结构查看:展示表的字段、类型等元信息
  2. 数据预览:可直接查询表数据
  3. 快速导航:通过点击数据源Logo快速进入详情页

版本兼容性说明

在Dinky 1.0.0版本中,对动态变量格式进行了优化:

  • 旧版本:${schemaName}${tableName}
  • 新版本:#{schemaName}#{tableName}

这一变更主要是为了避免与全局变量冲突,同时使整库同步场景也能支持全局变量。

最佳实践建议

  1. 命名规范:数据源名称使用有意义的英文全小写
  2. 连接测试:创建后务必进行连接测试
  3. 模板利用:合理配置Flink连接模板提高开发效率
  4. 安全配置:敏感信息尽量使用Flink连接配置保护
  5. 版本注意:使用ClickHouse时推荐0.3.2+版本驱动

总结

Dinky的数据源管理功能为数据开发提供了便捷的统一入口,通过合理的配置可以显著提高开发效率,同时保障数据安全。特别是与Flink的深度集成,使得从数据源配置到流处理作业开发形成了完整的工作流。

dinky Dinky is an out-of-the-box, one-stop, real-time computing platform dedicated to the construction and practice of Unified Streaming & Batch and Unified Data Lake & Data Warehouse. Based on Apache Flink, Dinky provides the ability to connect many big data frameworks including OLAP and Data Lake. dinky 项目地址: https://gitcode.com/gh_mirrors/di/dinky

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗嫣惠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值