RNNoise 项目使用教程

RNNoise 项目使用教程

rnnoise rnnoise 项目地址: https://gitcode.com/gh_mirrors/rnno/rnnoise

1. 项目目录结构及介绍

RNNoise 是一个基于循环神经网络(RNN)的音频降噪库。以下是项目的目录结构及其介绍:

rnnoise/
├── AUTHORS
├── COPYING
├── Makefile.am
├── README
├── TRAINING-README
├── autogen.sh
├── configure.ac
├── datasets.txt
├── download_model.sh
├── model_version
├── rnnoise-uninstalled.pc.in
├── rnnoise.pc.in
├── update_version
├── doc/
├── examples/
├── include/
├── m4/
├── scripts/
├── src/
├── torch/
└── training/

目录介绍

  • AUTHORS: 项目作者信息。
  • COPYING: 项目许可证文件。
  • Makefile.am: 自动生成的 Makefile 配置文件。
  • README: 项目介绍和使用说明。
  • TRAINING-README: 训练模型相关的说明文档。
  • autogen.sh: 自动生成配置文件的脚本。
  • configure.ac: 配置文件的模板。
  • datasets.txt: 训练数据集的列表。
  • download_model.sh: 下载预训练模型的脚本。
  • model_version: 模型版本信息。
  • rnnoise-uninstalled.pc.in: 未安装时的 pkg-config 文件模板。
  • rnnoise.pc.in: pkg-config 文件模板。
  • update_version: 更新版本信息的脚本。
  • doc/: 项目文档目录。
  • examples/: 示例代码目录。
  • include/: 头文件目录。
  • m4/: 自动配置工具的宏定义目录。
  • scripts/: 脚本目录。
  • src/: 源代码目录。
  • torch/: 与 PyTorch 相关的文件目录。
  • training/: 训练模型相关的代码和数据目录。

2. 项目启动文件介绍

RNNoise 项目的启动文件主要是 autogen.shconfigure 脚本。以下是它们的介绍:

autogen.sh

autogen.sh 是一个自动生成配置文件的脚本。运行该脚本会自动下载所需的模型文件,并生成 configure 脚本。

./autogen.sh

configure

configure 脚本是用于配置项目的编译选项。运行该脚本后,会生成 Makefile 文件,用于后续的编译和安装。

./configure

3. 项目的配置文件介绍

RNNoise 项目的配置文件主要包括 Makefile.amconfigure.ac。以下是它们的介绍:

Makefile.am

Makefile.am 是自动生成的 Makefile 配置文件,定义了项目的编译规则和依赖关系。

configure.ac

configure.ac 是配置文件的模板,用于生成 configure 脚本。它定义了项目的编译选项和依赖库。

./configure

通过以上步骤,您可以成功配置和编译 RNNoise 项目。

rnnoise rnnoise 项目地址: https://gitcode.com/gh_mirrors/rnno/rnnoise

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谭妲茹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值