Seaborn数据分布可视化完全指南

Seaborn数据分布可视化完全指南

seaborn Seaborn是基于matplotlib的数据可视化库,特别适合绘制统计图表,内置了许多复杂图形样式和颜色映射方案,使数据分析结果呈现更具吸引力和专业性。 seaborn 项目地址: https://gitcode.com/gh_mirrors/se/seaborn

数据分布可视化的重要性

在数据分析或建模的初期阶段,理解变量的分布情况是至关重要的第一步。通过可视化技术,我们可以快速回答许多关键问题:观测值的范围是什么?它们的集中趋势如何?是否存在明显的偏斜?是否有双峰分布的迹象?是否存在显著的异常值?这些问题的答案是否会随着其他变量的变化而变化?

Seaborn作为Python中强大的数据可视化库,提供了一系列专门用于探索数据分布的函数。本文将深入讲解如何使用Seaborn进行数据分布可视化。

准备工作

在开始之前,我们需要导入必要的库并设置主题样式:

import seaborn as sns
sns.set_theme()

单变量直方图

直方图是最常见的数据分布可视化方法之一。Seaborn中可以使用displot()histplot()函数来绘制直方图。

基础直方图

penguins = sns.load_dataset("penguins")
sns.displot(penguins, x="flipper_length_mm")

通过这个简单的直方图,我们可以立即获得关于企鹅鳍肢长度的一些洞察。例如,最常见的鳍肢长度约为195毫米,但分布呈现双峰形态。

分箱(bin)大小的选择

分箱大小是直方图的重要参数,错误的分箱大小可能会掩盖数据的重要特征或产生虚假模式。

  1. 直接设置分箱宽度:
sns.displot(penguins, x="flipper_length_mm", binwidth=3)
  1. 指定分箱数量:
sns.displot(penguins, x="flipper_length_mm", bins=20)

处理离散变量

当变量取较少的整数值时,默认分箱可能会产生不自然的间隙:

tips = sns.load_dataset("tips")
sns.displot(tips, x="size")

解决方法:

  1. 明确指定分箱边界:
sns.displot(tips, x="size", bins=[1, 2, 3, 4, 5, 6, 7])
  1. 使用离散模式:
sns.displot(tips, x="size", discrete=True)

分类变量的直方图

sns.displot(tips, x="day", shrink=.8)

基于其他变量的条件分布

理解变量分布后,下一步通常是探索该分布是否随其他变量而变化。

使用色调(hue)区分

sns.displot(penguins, x="flipper_length_mm", hue="species")

不同的可视化方式

  1. 阶梯图:
sns.displot(penguins, x="flipper_length_mm", hue="species", element="step")
  1. 堆叠图:
sns.displot(penguins, x="flipper_length_mm", hue="species", multiple="stack")
  1. 并列图:
sns.displot(penguins, x="flipper_length_mm", hue="sex", multiple="dodge")

使用分面(facet)展示

sns.displot(penguins, x="flipper_length_mm", col="sex")

归一化直方图统计

当子集的观测数量不等时,比较它们的计数分布可能不太理想。可以使用归一化:

  1. 密度归一化:
sns.displot(penguins, x="flipper_length_mm", hue="species", stat="density")
  1. 独立归一化:
sns.displot(penguins, x="flipper_length_mm", hue="species", stat="density", common_norm=False)
  1. 概率归一化:
sns.displot(penguins, x="flipper_length_mm", hue="species", stat="probability")

核密度估计(KDE)

核密度估计提供了另一种可视化数据分布的方法,它不使用离散的分箱,而是使用高斯核平滑观测值,生成连续的密度估计。

基础KDE图

sns.displot(penguins, x="flipper_length_mm", kind="kde")

平滑带宽的选择

带宽选择对KDE的准确性至关重要:

  1. 较小带宽:
sns.displot(penguins, x="flipper_length_mm", kind="kde", bw_adjust=.25)
  1. 较大带宽:
sns.displot(penguins, x="flipper_length_mm", kind="kde", bw_adjust=2)

条件KDE

sns.displot(penguins, x="flipper_length_mm", hue="species", kind="kde")

填充KDE曲线

sns.displot(penguins, x="flipper_length_mm", hue="species", kind="kde", fill=True)

KDE的局限性

KDE假设基础分布是平滑且无界的,这在某些情况下会导致问题:

  1. 自然有界变量:
sns.displot(tips, x="total_bill", kind="kde")
  1. 使用cut参数限制范围:
sns.displot(tips, x="total_bill", kind="kde", cut=0)
  1. 离散数据问题:
diamonds = sns.load_dataset("diamonds")
sns.displot(diamonds, x="carat", kind="kde")

直方图与KDE结合

sns.displot(diamonds, x="carat", kde=True)

经验累积分布函数(ECDF)

ECDF绘制了一条单调递增的曲线,其中曲线高度反映了观测值的比例。

总结

Seaborn提供了多种可视化数据分布的方法,每种方法都有其优缺点。直方图直观但受分箱影响大;KDE平滑连续但对边界和离散数据敏感;ECDF保留了所有数据点但可能不如前两者直观。在实际应用中,应根据数据特性和分析目标选择合适的方法,有时结合多种方法能获得更全面的理解。

seaborn Seaborn是基于matplotlib的数据可视化库,特别适合绘制统计图表,内置了许多复杂图形样式和颜色映射方案,使数据分析结果呈现更具吸引力和专业性。 seaborn 项目地址: https://gitcode.com/gh_mirrors/se/seaborn

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪炎墨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值